基于改进粒子群优化的无人机最优能耗路径规划

笔记作者:
王海博,男,西安工程大学电子信息学院,2024级研究生,张宏伟人工智能课题组
研究方向:模式识别与人工智能
电子邮件:1137460680@qq.com

为了提高无人机在山地地形飞行作业时的能量效率,这篇文章提出了一种基于改进粒子群优化(PSO)算法的最优能量路径规划方法,通过合理的路径规划方法,有效降低无人机在飞行作业过程中的非必要能量消耗。首先,以无人机飞行过程中能量消耗最优为目标,设计了基于粒子群优化算法的三维路径规划方法。然后,针对经典粒子群算法全局搜索能力差、易受局部最优性影响等缺点,提出了一种基于深度确定性策略梯度(DDPG)的参数自适应算法。该方法通过监测粒子群解集的状态,动态调整粒子群算法的主要参数。

原文链接:https://www.mdpi.com/2071-1050/15/16/12101

1. Introduction

无人机(Unmanned aerial vehicle, UAVs)通过机载编程或无线电遥控机构进行控制,在火灾监控、目标跟踪、智能农业、灾害救援等领域得到了广泛的应用。无人机根据翼型分为旋翼无人机和固定翼无人机,旋翼无人机中以四旋翼无人机最为普遍。对四旋翼无人机的偏好源于其优势,如低成本,紧凑的尺寸和高机动性,使其在复杂的环境中运行。尽管有这些优势,四旋翼无人机执行任务的能力往往受到电池功耗的限制。因此,研究在不改变电池容量的情况下优化能量消耗的路径规划算法对于提高四旋翼无人机的航程和效率具有重要意义。
在过去的几年里,许多学者对通过在无人机上安装能量收集装置来延长电池储能寿命进行了研究,并取得了研究成果。
对于无人机来说,路径规划是一个不可或缺的方面,其目标是确定无人机的最佳飞行轨迹,确保其避开周围的任何障碍物和其他飞行器。路径规划技术对于在3D空间中描绘无人机的安全路线至关重要。传统的路径规划算法主要有A*算法、Dijkstra算法、Voronoi图、人工势场法等。这些算法需要预先加载地形环境信息,在地形环境复杂时存在计算量大、容易陷入局部最优的缺点。目前,许多专家使用启发式算法来优化路径规划,并取得了一些成果。需要注意的是,上述算法中参数的调优是在程序执行之前完成的,不能在执行过程中进行调整,因此,如果外部环境发生变化,则无法对算法进行调整,从而影响算法的性能。
鉴于此,本文在参数自适应算法中引入深度强化学习算法模型,提出了一种基于参数自适应的改进粒子群算法,并将其应用于山地地形下无人机的最优能量路径规划。本研究为无人机提供了一种可行的节能路径规划方法,以提高无人机在复杂地形环境下的任务执行效率。本文的主要贡献和创新点可以概括为以下几点:
(1)针对山地地形环境下无人机飞行路径不合理造成的能量浪费问题,提出了综合考虑无人机能耗、飞行成本、地形距离和地形碰撞约束的目标成本函数,将无人机最优耗能路径规划问题简化为基于粒子群算法的目标函数优化问题。
(2)为了解决PSO算法在求解复杂高维问题时容易陷入局部最优的缺点,该文提出一种基于DDPG模型的自适应参数控制方法,有效提高了PSO算法的全局收敛性。
本文其余部分的结构如下:第2节简要介绍了PSO算法的基本模型、DDPG深度强化学习模型以及本文讨论的四旋翼飞行器能耗功率的计算方法。第3节详细描述了所提出的PSODDPG算法及其在路径规划问题中的应用。第4节介绍了模拟实验环境以及与其他类似算法的比较分析。最后,第5部分给出了本文的结论。

2. Preliminaries

在本节中,介绍了一些基本的数学符号和算法模型。

2.1. Particle Swarm Optimization Algorithm

粒子群优化算法(Particle Swarm Optimization, PSO)是一种典型的群体智能优化算法,由Kennedy博士和Eberhart博士于1995年首次提出。粒子群算法将粒子的自我经验和社会经验相结合,以粒子的形式导出候选解。该优化方法在搜索空间中使用飞行粒子集合,并向有希望的区域移动,以获得全局最优解。
在经典的粒子群优化中,粒子的速度通常受其先前最佳位置和全局最佳粒子在群体中的位置的影响。为了描述粒子的状态,将第i个粒子的速度Vi和位置Xi定义为:
在这里插入图片描述
D表示粒子群搜索空间的维数,N表示粒子个数。随着搜索优化算法的运行,两个粒子的运动向量更新如下:
在这里插入图片描述
w为惯性权重,c1为认知加速度系数,c2为社会加速度系数,r1和r2为[0,1]内均匀分布的随机数,Vi(t)表示第t代第i个粒子的速度,pBesti

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值