子空间投影



分类: 线性代数


首先我们可以通过上图了解投影在二维空间R2中是怎么回事,现有向量a和b,将b向量投影到a向量,p为b在a上的投影,即p是a上离b最近的点,e=b-p这好比b与p之间的误差,这个误差与a相互垂直,根据垂直关系我们可以列出方程,投影p是a的倍数,所以p=xa,这个x是一个标量,a垂直于e,也就是说 ,将式子作一些变形得到 ,则,投影 ,从投影p的式子可以看出,若b变成了两倍,投影p也会变成2倍,若a变成了两倍,则投影p保持不变。仔细观察投影p的这个式子, 是一个矩阵,b向量经过这个矩阵后得到了其投影p,所以投影是通过矩阵完成的,我们将该矩阵称为投影矩阵(projection matrix),换句话说,投影就是某个矩阵,作用在b上面,使我们得到投影p,从公式中可看出,投影矩阵(注意这里是大写P,不要与前面的投影小写p混淆),下面讨论一下投影矩阵P的性质,第一点,先说说列空间,用任何向量b乘以投影矩阵,结果总在投影矩阵的列空间里,因为b给出了对其列的线性组合,而我们又知道任何向量b乘以投影空间总在向量a上,因此投影矩阵p的列空间,是通过a的一条线,列空间维数是1,投影矩阵的秩是1;第二点,投影矩阵是对称的,因为 ,第三点,若是做两次投影,即将b投到a上,然后再将p(小写p,表投影)向a投一次,所以得到的还是p,这意味着P2=P(大写P,表投影矩阵),我们最好记住上面的3个公式,即x的公式,投影p的公式p=ax,投影矩阵P的公式。

下面从二维空间R2推广到高维空间Rn的情况,在这之前,我们需要讨论一下为什么要投影。

在上一篇中我们稍微提了一下Ax=b无解的情况,当无解时我们只能求解最接近的那个可解问题来求原方程的最优解,即要将b作调整,使其变成A的列空间中最接近b的那个向量,那么怎样才算是最接近的呢?这就要将b向A的列空间投影得到p,因为p在列空间中,因此Ax=p是有解的,这就是为什么要作投影,可以用来解决方程无解的情况。为了理解方便,接下来我主要以三维情况为例,但是要知道更高维和三维本质上是一样的。假设有三维中的一个平面和一个不在平面上的向量b,现在要将b投影在平面上,平面有两个基向量a1和a2,它们线性无关,回想下和方程组的联系,可知这个平面是矩阵A的列空间,即,当然矩阵A可以是两列,也可以是n列,这里写成两列,投影p是基向量的组合,即 ,写成矩阵的形式即  ,根据误差向量 垂直于平面,我们可得出等式,e垂直于平面的意思就是e分别垂直于两个基向量a1和a2,因此分别得到 ,将两个方程合并成矩阵形式,,即 ,对比可发现平面上的投影方程和直线上的投影方程很相似,同样对其进行变形,将其改写为 ,则 ,投影 ,投影矩阵  ,这个公式看起来很复杂,根据乘积的逆等于各自逆的反顺序相乘,可得到 ,问题出现了,为什么会这样呢?不应该投影矩阵算出来始终为I的,一定要注意因为A不是方阵(我们讨论的是Ax=b无解的情况,因此A不是方阵),所以A的逆不存在,所以 不能化简,我们做的这种变换是不成立的,只有A为可逆阵时才允许做后面的这一步变换,但是我们可以看一下当A是可逆阵时这个式子表示的含义:如果A是n*n可逆方阵,那么它的列空间是整个Rn,因为其对于所有的b均有解,既然b已经在列空间中,那么投影矩阵P是单位阵也无可厚非了。关于x,投影p,投影矩阵P的3个公式最好也记住。同样对于投影矩阵P,我们讨论一下其性质:第一点,投影矩阵仍然是对称阵,将P进行转置即可得出结论;第二点,P2=P,即进行第二次投影时还是会投影在第一次投影的地方,接下来我们简单看看投影思想在最小二乘法中的应用。

当我们遇到一个方程组,有太多的方程,未知数却只有几个,现在我们要求它的最优解。假设有三个点(1,1),(2,2),(3,2),这三个点拟合直线b=C+Dt,首先我们要建立矩阵A,只要找到A,我们就能使用上面推导的那些公式,C+D=1,C+2D=2,C+3D=2,所以对于这个例子,对应的无解方程Ax=b为,所谓的最优解并不是这个方程的解,而是Ax=p的解,即 的解,所以现在知道为什么上一篇中说当Ax=b无解时,只要在方程两侧同乘AT后方程就可解了吧。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值