普通相机模型(针孔相机模型)——从世界坐标系到图像坐标系

普通相机模型

在摄影和计算机视觉领域,普通相机模型(或称为针孔相机模型)是理解图像获取过程中最基本的模型之一。这种模型虽然简化了真实相机的复杂性,但却提供了足够的精确度,用于解释和模拟从三维场景到二维图像的转换过程。

1. 相机模型的基本原理

普通相机模型基于一个极为简化的想法:一个“针孔”或者一个无大小的点,光通过这个小孔投影到相机后面的成像平面上。在这个模型中,所有的光线在进入针孔前都是平行的,而当它们穿过这个小孔后,就会在成像平面上形成一个倒置的图像。

2. 几何描述

从几何学的角度来看,针孔相机模型可以描述为一个原点(光心或针孔的位置),以及一个与原点垂直的图像平面。图像平面通常设定在原点的负z轴方向上,与原点之间的距离被称为焦距 f f f。焦距是影响成像大小的关键参数。

3. 坐标系转换

在图像处理和计算机视觉中,从世界坐标系转换到相机坐标系,再到图像坐标系的过程可以通过一系列的数学公式来表达。以下是这些转换的详细步骤和对应公式:
图片来源https://docs.opencv.org/

1. 从世界坐标系到相机坐标系

首先,需要将世界坐标系中的点 P w = ( X , Y , Z ) {P}_{w} = (X, Y, Z) Pw=(X,Y,Z) 转换到相机坐标系中的点 P c = ( X c , Y c , Z c ) {P}_{c} = (X_c, Y_c, Z_c) Pc=(Xc,Yc,Zc)。这一步骤通常涉及旋转和平移,可以用以下矩阵表示:

P c = R ( P w − C ) {P}_{c} = \mathbf{R}(\mathbf{P}_{w} - \mathbf{C}) Pc=R(PwC)

其中, R {R} R是一个 3x3 的旋转矩阵,描述了相机相对于世界坐标系的旋转。 C {C} C是相机在世界坐标系中的位置,表示为一个向量。

2. 从相机坐标系到图像平面坐标系

接下来,将相机坐标系中的三维点 P c {P}_{c} Pc 投影到相机的图像平面。这个转换涉及焦距 $ f $ 和图像平面的尺度因子 s x s_x sx s y s_y s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员AlbertTu

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值