感知器、logistic与svm 区别与联系

本文探讨了从感知器到logistic回归再到SVM的演变过程,强调了三种线性分类器的区别与联系。感知器的损失函数关注误分类点的函数间隔,logistic回归引入平滑的logistic函数,SVM则选择最大间隔的超平面,其损失函数仅考虑支持向量。这三者在损失函数设计上有所不同,logistic和SVM旨在提升关键数据点的权重。
摘要由CSDN通过智能技术生成

从感知器谈起

对于典型的二分类问题,线性分类器的目的就是找一个超平面把正负两类分开。对于这个超平面,我们可以用下面的式子来表示,

ωTx+b=0

感知器是最简单的一种线性分类器。用f(x)表示分类函数,感知器可以如下来表示。
f(x)=sign(ω
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值