[机器学习笔记] 支持向量机SVM 和逻辑回归LR的异同

参考: https://www.cnblogs.com/zhizhan/p/5038747.html

为什么把SVM和LR放在一起进行比较?

一是因为这两个模型应用广泛。
二是因为这两个模型有很多相同点,在使用时容易混淆,不知道用哪个好,特别是对初学者。

相同点

  1. 都是线性分类器。本质上都是求一个最佳分类超平面。
  2. 都是监督学习算法。
  3. 都是判别模型。通过决策函数,判别输入特征之间的差别来进行分类。
    常见的判别模型有:KNN、SVM、LR。
    常见的生成模型有:朴素贝叶斯,隐马尔可夫模型。

不同点

1) 本质上是损失函数不同
LR的损失函数是交叉熵:
这里写图片描述
SVM的目标函数:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值