PTMs-BERT

前沿: 相比于GPT的单向自回归模型,BERT考虑到了利用上下文的双向信息,但是如果同时考虑双向信息,自然自回归的方式就不适宜了,BERT论文作者引入两项新的预训练任务。
论文: BERT: Pre-training of Deep Bidirectional Transformers forLanguage Understanding
目录:

  • 网络架构
  • 预训练
  • 微调
  • 实现细节
  • BERT-wwm
  • Roberta和BERT的区别
  • ERNIE 1.0 和ERNIE2.0

网络架构:
在这里插入图片描述
一般存在两种类型的bert大小模型,包括12,24层。

预训练:
MLM任务: 通过上下文信息来预测中心词的信息,一个完形填空任务。
15% word piece mask :80% 替换成[mask], 10%替换成随机单词;10%不改变
NSP任务:为了解决阅读理解任务,引入的判断句子关系的任务。50%:正确前后句;50%错误的

ebedding: token embedding,segment embedding, position embeddings

微调:
针对不同的任务存在不同的微调方式,比如分类,CLS。
缺点:
引入噪声,使得微调数据和预训练数据形式不同;
BERT没有考虑预测[MASK]的相关性,这个好像在electra中体现到了
输入长度受到限制
不适合生成任务。

BERT-wwm:
全词掩码,原先wordpiece考虑的是子词分割,那么对序列最小单位进行预测的时候,会使得单词的完整被破坏,只能预测一部分单词。科大讯飞实验室提出了一个升级版本,就是针对同一个单词的不同部分同时进行mask,也就是强关联的子词会被同时mask和预测。

Roberta:

  1. 移除了NSP任务;
  2. 将mask策略改成动态的,也就是说原先是数据送入网络中的时候mask确定的,但是在后面的batch训练过程中,mask的位置不会发生改变,这个是不好的,roberta针对这一点进行了改变,也就是说增加了10次的可变性。
  3. 其余的在学习率/数据量/batch_size大小。

ERNIE1.0和ERNIE2.0
首先考虑ERNIE1.0:同样是任务随机mask不好,所以在正常的随机mask预测的基础上面,增加了两项预训练任务:
Basic-level masking: 同bert
Phrase-level masking: mask连续短语
Entity-level masking:针对命名实体的实体进行mask。

ERNIE2.0同样还是多任务学习,也就是增加任务的数目,改变不同的量级
词级别:
结构级别:
语义级别:

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值