洛谷 P3373 【模板】线段树 2

给一个数列,进行三种操作:

  1. 某区间每个数 × x \times x ×x
  2. 某区间每个数 + x +x +x
  3. 求区间和

和线段树模板1相比,多了一个乘法操作。要先乘后加。还有注意步步取模…

代码如下:

#include<iostream>
#include<cstdio>
#define lc(p) ((p)<<1)
#define rc(p) (((p)<<1)|1)
#define MAXN 100005
using namespace std;
typedef long long ll;
int n,m,MOD,x,y,t;
ll a[MAXN],t1[MAXN<<2],t2[MAXN<<2],res[MAXN<<2],k;
void pushup(int p){res[p]=(res[lc(p)]+res[rc(p)])%MOD;}
void build(int l,int r,int p){
    t1[p]=1;t2[p]=0;
    if(l==r){res[p]=a[l]%MOD;return;}
    int mid=l+(r-l)/2;
    build(l,mid,lc(p));build(mid+1,r,rc(p));
    pushup(p);
}
void f(int l,int r,int p,ll k1,ll k2){
    res[p]=(res[p]*k1%MOD+k2*(r-l+1)%MOD)%MOD;
    t1[p]=k1*t1[p]%MOD;t2[p]=(t2[p]*k1%MOD+k2)%MOD;
}
void pushdown(int l,int r,int p){
    int mid=l+(r-l)/2;
    f(l,mid,lc(p),t1[p],t2[p]);f(mid+1,r,rc(p),t1[p],t2[p]);
    t1[p]=1;t2[p]=0;
}
void upd1(int x,int y,int l,int r,int p,ll k){
    if(x<=l&&r<=y){res[p]=res[p]*k%MOD;t1[p]=k*t1[p]%MOD;t2[p]=k*t2[p]%MOD;return;}
    pushdown(l,r,p);
    int mid=l+(r-l)/2;
    if(x<=mid)upd1(x,y,l,mid,lc(p),k);
    if(y>mid)upd1(x,y,mid+1,r,rc(p),k);
    pushup(p);
}
void upd2(int x,int y,int l,int r,int p,ll k){
    if(x<=l&&r<=y){res[p]=(res[p]+(r-l+1)*k%MOD)%MOD;t2[p]=(k+t2[p])%MOD;return;}
    pushdown(l,r,p);
    int mid=l+(r-l)/2;
    if(x<=mid)upd2(x,y,l,mid,lc(p),k);
    if(y>mid)upd2(x,y,mid+1,r,rc(p),k);
    pushup(p);
}
ll query(int x,int y,int l,int r,int p){
    if(x<=l&&r<=y)return res[p]%MOD;
    pushdown(l,r,p);
    int mid=l+(r-l)/2;ll res=0;
    if(x<=mid)res+=query(x,y,l,mid,lc(p));res%=MOD;
    if(y>mid)res+=query(x,y,mid+1,r,rc(p));
    return res%MOD;
}
int main(){
#ifdef WINE
    freopen("data.in","r",stdin);
#endif
    scanf("%d%d%d",&n,&m,&MOD);
    for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
    build(1,n,1);
    while(m--){
        scanf("%d%d%d",&t,&x,&y);
        if(t!=3)scanf("%lld",&k);
        if(t==1)upd1(x,y,1,n,1,k);
        if(t==2)upd2(x,y,1,n,1,k);
        if(t==3)printf("%lld\n",query(x,y,1,n,1));
    }
    return 0;
}

P1168题目是关于中位数线段树解法的问题。中位数线段树解法可以通过维护两个堆来实现。一个是大根堆,一个是小根堆。每次插入元素时,根据一定的规则来维护这两个堆,使得大根堆的个数在一定情况下比小根堆多1或者相等。大根堆的最后一个元素即为中位数。具体的规则如下: 1. 如果大根堆和小根堆的个数相等,下一次插入的元素一定插入到大根堆。此时判断小根堆的堆顶是否大于当前元素x,如果是,则将小根堆的堆顶元素插入到大根堆,然后将x压入小根堆;否则直接将x压入大根堆。 2. 如果大根堆和小根堆的个数不相等,按照类似的规则进行操作。 通过以上规则,可以实现在每次插入元素时,维护两个堆的平衡,并且保证大根堆的最后一个元素即为中位数。 这种解法的时间复杂度为O(logN),其中N为序列的长度。 #### 引用[.reference_title] - *1* *2* [中位数(p1168)(堆/树状数组+二分/线段树+二分)](https://blog.csdn.net/qq_45604735/article/details/114382762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [ P1168 中位数(权值线段树,离散化)](https://blog.csdn.net/qq_38232157/article/details/127594230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值