python矩阵可视化

本文探讨了imshow和matshow在显示数值矩阵方面的优缺点,以及如何改进文本标注和坐标显示,提供了drawMat函数示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


python35种绘图函数总结

imshow和matshow

matplotlib中提供了两个矩阵可视化函数,分别是imshow和matshow,由于二者过于相似,且imshow常被用做图片展示工具,所以matshoww这个函数基本没什么人知道,总之二者对比如下

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np

x = np.random.rand(5,5)

fig,axes = plt.subplots(1,2,figsize=(8,4))

axes[0].imshow(x)
plt.title("imshow")
axes[1].matshow(x)
plt.title("matshow")

plt.tight_layout()
plt.show()

但无论是imshow也好,还是matshow也罢,对矩阵,尤其是小矩阵,展示得并不完美,徒有伪彩色对应,而并无具体的数值,那么对于一些需要看到实际数值的场合,其表现力当然是不够的。

显示数值

所以接下来,就要在特定的格子中,写下矩阵的具体数值。

from itertools import product

M,N = 3,6
x = np.random.rand(M,N)

plt.matshow(x)
for i,j in product(range(M),range(N)):
    plt.text(j-0.15, i, f"{x[i,j]:.2}")

plt.show()

product是排列组合迭代器,可以将输入序列的元素两两组合在一起,从而避免循环嵌套。plt.text的作用就是显示数值,其中j表示x坐标,i表示y轴坐标。在矩阵索引中,i表示行号,j表示列号。

在这里插入图片描述

这张图当然也有问题,由于文字是横着写的,但矩阵中的格子却是正方形的,这个显然看上去不太和谐。如果用pcolormesh这种像素形状可以更改的函数,显然更加合适。

但pcolormesh有两个问题,一是坐标轴方向和矩阵下标的方向不符,二是坐标标签的位置并不指格点中间,为此需要稍加改造。

def drawMat(x, ax=None):
    M, N = x.shape
    if not ax:
        ax = plt.subplot()
    arrM, arrN = np.arange(M), np.arange(N)
    plt.yticks(arrM+0.5, arrM)
    plt.xticks(arrN+0.5, arrN)
    ax.pcolormesh(x)
    ax.invert_yaxis()
    for i,j in product(range(M),range(N)):
        ax.text(j+0.2, i+0.55, f"{x[i,j]:.2}")
    plt.show()

x = np.random.rand(5,5)
drawMat(x)

其中,xticks和yticks用于重新映射坐标,将N.5映射为N,这样坐标位置也就转化为了具体数值;invert_yaxis表示y轴坐标翻转,从而直角坐标系被改为矩阵坐标系。

效果如下

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值