pandas引入约定:
注:因为Series和DataFrame用的次数多,因此引入本地命名空间中更方便。
pandas的两个主要数据结构:Series和DataFrame
一、Series
Series由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(索引)组成。
Series有values和index两个属性,表示数组形式和其索引对象。
可以自己设置index:
也可以通过字典来创建Series:
Series对象本身及其索引都有一个name属性:
Series的索引可以通过赋值就地修改:
二、DataFrame
构建DataFrame的方法:
1.传入一个由等长列表或Numpy数组组成的字典:
如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:
行索引可以通过索引字段ix进行获取:
为不存在的列赋值会创造出一个新列。例如,frame中不存在debt列,,如此赋值会创造出一个新列。
pandas的isnull和notnull函数用于检测缺失数据:
关键字del用于删除列:
通过索引返回的列是相应数据的视图,不是副本,因此对返回的Series做的任何修改都会反映到DataFrame上。
另一种很常见但是也较难理解的产生DataFrame的方式是嵌套字典:
传给DataFrame,会被解释为:外层字典的键作为列,内层键则作为行索引:
DataFrame构造函数所能接受的数据:
可以设置DataFrame的index和columns的name属性:
Series的index是不可修改的&#