【利用python进行数据分析】pandas入门

这篇博客详细介绍了pandas的两个核心数据结构Series和DataFrame。内容包括Series的创建、索引修改,DataFrame的构造方式、数据对齐、算术运算、数据过滤以及排序、汇总统计等操作。此外,还涉及了缺失数据处理、层次化索引、函数应用和数据重塑等关键概念。
摘要由CSDN通过智能技术生成

pandas引入约定:

注:因为Series和DataFrame用的次数多,因此引入本地命名空间中更方便。

pandas的两个主要数据结构:Series和DataFrame

一、Series

Series由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(索引)组成。

Series有values和index两个属性,表示数组形式和其索引对象。

可以自己设置index:

也可以通过字典来创建Series:

Series对象本身及其索引都有一个name属性:

Series的索引可以通过赋值就地修改:

二、DataFrame

构建DataFrame的方法:

1.传入一个由等长列表或Numpy数组组成的字典:

如果指定了列序列,则DataFrame的列就会按照指定顺序进行排列:

行索引可以通过索引字段ix进行获取:

为不存在的列赋值会创造出一个新列。例如,frame中不存在debt列,,如此赋值会创造出一个新列。

pandas的isnull和notnull函数用于检测缺失数据:

关键字del用于删除列:

通过索引返回的列是相应数据的视图,不是副本,因此对返回的Series做的任何修改都会反映到DataFrame上。

另一种很常见但是也较难理解的产生DataFrame的方式是嵌套字典:

传给DataFrame,会被解释为:外层字典的键作为列,内层键则作为行索引:

DataFrame构造函数所能接受的数据:

可以设置DataFrame的index和columns的name属性:

Series的index是不可修改的&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值