szu_ljm
码龄4年
关注
提问 私信
  • 博客:108,259
    社区:603
    视频:6,223
    115,085
    总访问量
  • 46
    原创
  • 268,025
    排名
  • 299
    粉丝
  • 13
    铁粉
  • 学习成就

个人简介:大二菜鸡努力探索中

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2021-02-06
博客简介:

m0_55202222的博客

查看详细资料
  • 原力等级
    成就
    当前等级
    5
    当前总分
    1,091
    当月
    6
个人成就
  • 获得361次点赞
  • 内容获得110次评论
  • 获得1,558次收藏
  • 代码片获得6,874次分享
创作历程
  • 2篇
    2024年
  • 31篇
    2023年
  • 13篇
    2022年
成就勋章
兴趣领域 设置
  • Python
    pythonscikit-learnnumpyscipypandasmatplotlibconda
  • 编程语言
    c语言
  • 数据结构与算法
    逻辑回归
  • 人工智能
    计算机视觉机器学习深度学习目标跟踪pytorch数据分析
  • 嵌入式
    单片机
  • 操作系统
    linux
  • 前沿技术
    机器人
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【CV | TAL】论文浅读 - -PGCN: Graph Convolutional Networks for Temporal Action Localization

目前大多数最前沿的时序动作定位模型会单独处理每个动作proposals,而不会在学习过程中明确利用不同proposals之间的关系。大多数Two-Stage的TAL模型首先生成一组一维时空proposals,然后对每个proposals单独进行动作分类和动作边界回归,然而,在预测阶段单独处理每个proposals,势必会忽略提议之间的语义关系。
原创
发布博客 2024.02.10 ·
1126 阅读 ·
15 点赞 ·
0 评论 ·
15 收藏

【CV | TAL】论文浅读 - - TemporalMaxer: Maximize Temporal Context with only Max Pooling for TAL

最近在视频理解领域的研究强调了对提取的视频片段特征应用长时序情境建模(TCM)模块的重要性,例如采用复杂的自我注意机制等方法来建模这种长时序的语境关系。
原创
发布博客 2024.02.04 ·
1121 阅读 ·
20 点赞 ·
0 评论 ·
25 收藏

【CV | TAL】论文浅读 - - TriDet: Temporal Action Detection with Relative Boundary Modeling

TriDet的工作主要有两大贡献:利用不同时刻之间的相对关系来建模边界,有效解决了TAL任务中动作边界模糊的问题,提高了动作定位的精度;创新性提出了SGP Layers,有效缓解了Self-attention Layers会降低特征可区分性的问题,有利于网络定位到动作边界
原创
发布博客 2023.11.30 ·
746 阅读 ·
4 点赞 ·
1 评论 ·
8 收藏

【CV | TAL】论文浅读 - - VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking

以上就是VideoMAE v2论文浅读学习笔记的全部内容,本文简单介绍了VideoMAE v2的研究动机和方法改进,简单分析一下VideoMAE v2骨干网络ViT的代码框架。VideoMAE v2这种掩码自编码方法应用在目前视觉大模型的训练中有广阔的前景,VideoMAE的Tube masked方式增强了网络空间建模的能力,通过学习相邻位置的cube特征来重构被掩码的cube,有效提升网络在小容量数据集上的训练效果,也减小了计算开销。
原创
发布博客 2023.10.01 ·
1415 阅读 ·
7 点赞 ·
2 评论 ·
12 收藏

Python深度学习入门 - - Transformers网络学习笔记

Transformers 模型在自然语言处理(NLP)领域取得了巨大的成功,并在许多任务中取得了 state-of-the-art 的结果。后面研究人员也开始将其应用于计算机视觉(Computer Vision)领域,并取得了一些令人印象深刻的结果,像ViT(Vision Transformers)这种SOTA模型。
原创
发布博客 2023.09.25 ·
1635 阅读 ·
3 点赞 ·
1 评论 ·
13 收藏

Python深度学习入门 - - 卷积神经网络学习笔记

卷积神经网络(Convolutional Neural Network,CNN)在设计上受到了人脑视觉系统的启发,并具有一些与类人脑属性相关的特点。
原创
发布博客 2023.09.17 ·
479 阅读 ·
3 点赞 ·
2 评论 ·
8 收藏

Python深度学习入门 - - 人工神经网络学习笔记

如果说机器学习是人工智能的皇冠,深度学习就是这顶皇冠上的明珠,深度学习的出现为人工智能领域的发展拉开了新的序幕。与常见的机器学习模型不同的是,深度学习的数据量更大,特征参数更多,但更重要的是深度学习不需要人为准备特征,神经网络会提取数据,并且不需要人为干预参数,学习过程会自动生成参数,调整参数,直到完成任务的效果达到最佳 。
原创
发布博客 2023.08.28 ·
740 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

Jetson Nano之ROS入门 -- YOLO目标检测与定位

Darknet_ros将YOLO算法集成到ROS中,使得机器人可以实时地检测和识别周围环境中的物体。它提供了一些ROS节点和服务,可以在ROS系统中轻松使用YOLO算法进行目标检测和识别。同时,它还提供了一些示例程序,帮助用户快速了解如何在ROS中使用深度学习算法进行机器人视觉任务。
原创
发布博客 2023.07.31 ·
4053 阅读 ·
16 点赞 ·
13 评论 ·
115 收藏

Jetson nano 之 ROS入门 - - 深度学习环境配置

Jetson Nano支持多种深度学习框架,如TensorFlow、PyTorch、Caffe和MXNet等,可以通过安装相应的软件包来进行深度学习模型训练和推理
原创
发布博客 2023.06.18 ·
2658 阅读 ·
8 点赞 ·
2 评论 ·
34 收藏

Jetson Nano之ROS入门 - - SLAM之Gmapping建图与路径规划

以上就是SLAM之Gmapping建图与路径规划学习笔记的全部内容。Gmapping算法能够通过对机器人传感器数据的实时分析和处理,构建出高精度的环境地图,并且能够实现环境地图的实时更新,为路径规划提供了重要的基础。应用路径规划算法,帮助机器人在环境中寻找最短路径,并且能够实时更新路径规划结果以适应环境变化
原创
发布博客 2023.06.07 ·
9759 阅读 ·
21 点赞 ·
2 评论 ·
242 收藏

Jetson nano之ROS入门 - - 机器人建模与仿真

机器人建模和仿真还可以帮助工程师开发和测试机器人的控制算法,以及评估机器人的性能和鲁棒性。此外,通过使用ROS进行机器人建模和仿真,可以更好地理解机器人系统的各个组件之间的交互和通信,从而更好地设计和调试机器人系统的软件架构。另外,机器人建模和仿真还可以帮助工程师实现快速迭代和开发,因为在虚拟环境中进行测试和验证比在实际机器人上进行测试和验证更加高效和灵活。通过使用ROS进行机器人建模和仿真,可以更快速地识别和解决机器人系统中的问题,从而提高开发效率和机器人的性能和可靠性。
原创
发布博客 2023.05.31 ·
2274 阅读 ·
5 点赞 ·
2 评论 ·
32 收藏

Python机器学习入门 - - 贝叶斯算法学习笔记

朴素贝叶斯算法有很多优势,比如具有良好的可解释性,可以给出每个特征对于分类的影响程度,便于理解和解释;计算速度快,适合处理大规模数据集和高维数据;对于噪声数据和缺失数据有很好的鲁棒性;在处理文本分类和情感分析等自然语言处理任务上表现优异。总的来说,贝叶斯算法的意义依旧不可估量。
原创
发布博客 2023.05.24 ·
2252 阅读 ·
5 点赞 ·
2 评论 ·
25 收藏

Jetson nano 之 ROS入门 - - 机器人坐标变换

机器人坐标变换的重要性在于它可以使机器人在不同坐标系下保持一致的运动精度。因为在不同的坐标系下,机器人的运动轨迹和位置信息都会发生变化。例如,机器人在基座坐标系下的运动可能是直线运动,但在工具坐标系下的运动可能是旋转运动。如果不进行坐标变换,机器人的运动轨迹和位置信息就会出现偏差,导致机器人无法精确地完成任务。
原创
发布博客 2023.05.16 ·
1028 阅读 ·
3 点赞 ·
1 评论 ·
4 收藏

Python机器学习入门 -- 支持向量机学习笔记

大部分传统的机器学习算法都可以实现分类任务,但这些模型关注的是将不同类别的数据分得开就行,也就是说它们的核心思想是让整个模型分类出错的损失越小越好。刚刚好有一种机器学习模型,它不仅关注分类能不能将不同类别的数据完全分得开,还关注分类得到的决策边界的间隔能不能最大化,即离该决策边界每个类别最近的数据点的距离能不能更远,这就是我们今天的主角 - - 支持向量机。
原创
发布博客 2023.05.07 ·
1727 阅读 ·
6 点赞 ·
3 评论 ·
23 收藏

Jetson nano之ROS入门- -ROS集成开发搭建与ROS通信学习笔记

ROS采用分布式框架,主要是因为一个机器人通常包含多个部件,每个部件都有配套的控制程序,以实现机器人的运动与感知功能等。那么要协调一个机器人中的这些部件,或者协调由多个机器人组成的机器人集群,这时就需要让分散的部件能够互相通信,解决这种分布式通信问题正是ROS的设计初衷。
原创
发布博客 2023.05.02 ·
1315 阅读 ·
3 点赞 ·
1 评论 ·
11 收藏

Jetson nano B01学习笔记 -- 系统环境配置以及ROS安装

机器人技术是未来科技的高峰,等待着热爱机器人技术的小伙伴去征服。
原创
发布博客 2023.04.23 ·
3900 阅读 ·
10 点赞 ·
3 评论 ·
67 收藏

Python机器学习入门 - - 随机森林集成算法学习笔记

上次学习笔记介绍了决策树算法,它是机器学习中简单而高效的一个模型,即便如此,决策树毕竟势单力薄,也有很多问题无法解决,但如果我们引入多棵树那情况就有所改善。如果说树作为自然界的个体,那么森林就是群体,个体的集合。随机森林模型,从字面上说就是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的,增强了树个体的多样性和整个森林竞争能力。
原创
发布博客 2023.04.13 ·
467 阅读 ·
4 点赞 ·
2 评论 ·
5 收藏

Python 机器学习入门 - - 决策树算法学习笔记

ChatGPT一问世就给整个社会带来巨大的震撼和冲击,不禁让人惊叹现在AI的强大,我们好像离通用人工智能更近一步。在过去十几年人工智能领域的蓬勃发展中,扮演着主导地位的算法基本都是神经网络和深度学习,很多机器学习算法黯然失色。神经网络和深度学习虽然强大,但这个"黑盒"里面到底是个什么东西我们很难解释,就像人脑一样,神经元之间的相互作用是非常复杂微妙的。那机器学习中有没有一种比较强大的模型但是又可以很好解释的呢?有,那就是集成学习算法随机森林,而随机森林的每个分类器个体就是我们今天的主角- -决策树。
原创
发布博客 2023.04.05 ·
755 阅读 ·
2 点赞 ·
1 评论 ·
5 收藏

Python机器学习入门--聚类算法学习笔记

机器学习中有大量的分类任务,除了常见的分类算法能解决这些问题,还有经典的聚类算法来添砖加瓦,聚类和分类其实差不多,本质上都是为了将不同的数据分成不同的类别。不同的是,分类算法都是有监督学习或半监督学习,而聚类算法基本上都是无监督学习,即在没有标签的情况下进行数据分类,所以很多聚类的效果都不尽如人意。
原创
发布博客 2023.03.26 ·
1311 阅读 ·
5 点赞 ·
4 评论 ·
11 收藏

MicroPython开发esp32入门笔记--串口篇

串行接口简称串口,也称串行通信接口或串行通讯接口(通常指COM接口),是采用串行通信方式的扩展接口。串行接口 (Serial Interface)是指数据一位一位地顺序传送。其特点是通信线路简单,只要一对传输线就可以实现双向通信(可以直接利用电话线作为传输线),从而大大降低了成本,特别适用于远距离通信,但传送速度较慢。
原创
发布博客 2023.03.20 ·
7929 阅读 ·
34 点赞 ·
2 评论 ·
80 收藏
加载更多