统计学习·概率分布汇总

1.1 伯努利分布

举例:一次抛硬币结果 h e a d s = 1 , t a i l s = 0 heads=1,tails=0 heads=1,tails=0
p ( x = 1 ∣ μ ) = μ p(x=1|\mu)=\mu p(x=1μ)=μ
由此可知抛硬币结果正反面存在一种分布,这种非0即1的单次实验被称为伯努利分布。也称为零一分布、两点分布。
伯努利分布:
B e r n ( x ∣ μ ) = μ x ( 1 − μ ) 1 − x Bern(x|\mu)=\mu^x(1-\mu)^{1-x} Bern(xμ)=μx(1μ)1x
其中期望、方差为 E [ μ ] = μ , V a r [ x ] = μ ( 1 − μ ) E[\mu]=\mu,Var[x]=\mu(1-\mu) E[μ]=μ,Var[x]=μ(1μ)

1.2 二项分布

举例:10次抛硬币,5次出现正面的概率?
二项分布是n个独立的是/非试验中成功的次数的离散概率分布。其实就是重复n次独立的伯努利试验。则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从0-1分布也就是伯努利分布。
B i n ( m ∣ N , μ ) = C N m μ m ( 1 − μ ) N − m Bin(m|N,\mu)=C_N^m\mu^m(1-\mu)^{N-m} Bin(mN,μ)=CNmμm(1μ)Nm
m表示成功的次数, μ \mu μ成功的概率。
期望、方差为 E [ m ] = ∑ m = 0 N B i n ( m ∣ N , μ ) = N μ , V a r [ m ] = ∑ m = 0 N ( m − E [ m ] ) 2 B i n ( m ∣ N , μ ) = N μ ( 1 − μ ) E[m]=\sum_{m=0}^NBin(m|N,\mu)=N\mu,Var[m]=\sum_{m=0}^N(m-E[m])^2Bin(m|N,\mu)=N\mu(1-\mu) E[m]=m=0NBin(mN,μ)=Nμ,Var[m]=m=0N(mE[m])2Bin(mN,μ)=Nμ(1μ)

在这里插入图片描述

1.3 均匀分布

举例:每个一段时间有一辆车通过公交车站,乘客的候车时间就服从均匀分布。
在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为 U ( a , b ) U(a,b) U(a,b).
在这里插入图片描述
f ( x ) = 1 b − a , a &lt; x &lt; b f(x)=\frac{1}{b-a},\quad a&lt;x&lt;b\quad f(x)=ba1,a<x<b
其中期望和方差分别为: E [ x ] = a + b 2 , V a r [ x ] = ( b − a ) 2 12 E[x]=\frac{a+b}{2},Var[x]=\frac{(b-a)^2}{12} E[x]=2a+b,Var[x]=12(ba)2.

1.4 泊松分布

举例:泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。
当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中 λ λ λ n p np np
P ( x ; λ ) = e − λ λ x x ! P(x;\lambda)=\frac{e^{-\lambda}\lambda^x}{x!} P(x;λ)=x!eλλx
其中 E [ x ] = λ , V a r [ x ] = λ E[x]=\lambda,Var[x]=\lambda E[x]=λ,Var[x]=λ.

1.5 几何分布

举例:抛掷硬币,第五次成功的概率。
几何分布就是在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。
P ( x = k ) = ( 1 − p ) k − 1 p P(x=k)=(1-p)^{k-1}p P(x=k)=(1p)k1p
其中 E [ x ] = 1 p , V a r [ x ] = 1 − p p 2 E[x]=\frac{1}{p},Var[x]=\frac{1-p}{p^2} E[x]=p1,Var[x]=p21p

1.6 指数分布

举例:某电子器件的寿命分布。
指数分布是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。
f ( x ) = 1 θ e − x θ f(x)=\frac{1}{\theta}e^{-\frac{x}{\theta}} f(x)=θ1eθx
其中 E [ x ] = θ , V a r [ x ] = θ 2 E[x]=\theta,Var[x]=\theta^2 E[x]=θ,Var[x]=θ2

1.7 Gamma分布

举例:指数分布解决的问题是“要等到一个随机事件发生,需要经历多久时间”,而gamma分布解决的问题是要等到n个随机事件都发生,需要经历多久时间。摘自知乎CC思SS。
G a m m a Gamma Gamma分布即为多个独立且相同分布 ( i i d ) (iid) iid的指数分布变量的和的分布。x~ Γ ( α , β ) \Gamma(\alpha,\beta) Γ(α,β), α \alpha α表示shape, β \beta β表示scale。
f x ( x ) = 1 β α Γ ( α ) x α − 1 e x β ; x , α , β &gt; 0 ; f_x(x)=\frac{1}{\beta^\alpha\Gamma(\alpha)}x^{\alpha-1}e^{\frac{x}{\beta}};\quad x,\alpha,\beta&gt;0; fx(x)=βαΓ(α)1xα1eβx;x,α,β>0;
Γ ( 1 , β ) ∼ E X P ( β ) \Gamma(1,\beta) \sim EXP(\beta) Γ(1,β)EXP(β)

Y i ∼ E X P ( β ) , X = Y 1 + Y 2 + . . . . . + Y n ∼ E r l a n g ( n , β ) Y_i\sim EXP(\beta),X=Y_1+Y_2+.....+Y_n\sim Erlang(n,\beta) YiEXP(β),X=Y1+Y2+.....+YnErlang(n,β)
其中 E [ x ] = α β , V a r [ x ] = α β 2 E[x]=\frac{\alpha}{\beta},Var[x]=\frac{\alpha}{\beta^2} E[x]=βα,Var[x]=β2α

1.8 卡方分布

举例:卡方分布用于检验样本是否偏离了期望,例如偏离了期望的分布(拟合优度检验),期望的比例(列联表)等。以特定概率分布为某种情况建模时,事物长期结果较为稳定,能够清晰进行把握。但是期望与事实存在差异怎么办?偏差是正常的小幅度波动?还是建模错误?此时,利用卡方分布分析结果,排除可疑结果。事实与期望不符合情况下使用卡方分布进行检验,常规事件中出现非常规现象,如何检查问题所在的情况下使用卡方分布。

若n个相互独立的随机变量 ξ ₁ , ξ ₂ , . . . , ξ n ξ₁,ξ₂,...,ξn ξξ...,ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布 ( c h i − s q u a r e d i s t r i b u t i o n ) (chi-square\quad distribution) chisquaredistribution
χ v 2 ∼ Γ ( v 2 , 2 ) \chi_v^2\sim\Gamma(\frac{v}{2},2) χv2Γ(2v,2)
f ( x ) = 1 2 v 2 Γ ( α ) x v 2 − 1 e − x 2 , x , v &gt; 0 f(x)=\frac{1}{2^{\frac{v}{2}}\Gamma(\alpha)}x^{\frac{v}{2}-1}e^{-\frac{x}{2}},\quad x,v&gt;0 f(x)=22vΓ(α)1x2v1e2x,x,v>0
其中 E [ x ] = v , V a r [ x ] = 2 v E[x]=v,Var[x]=2v E[x]=v,Var[x]=2v

1.9 t分布

举例:正态分布,可以算作t分布的特例。
T分布被广泛应用于小样本假设检验的原因。虽然是很小的样本,但是,却强大到可以轻松的排除异常值的干扰,准确把握住数据的特征(集中趋势和离散趋势)!
z ∼ N ( 0 , 1 ) , V ∼ χ v 2 , T = z v / r ∼ t v z\sim N(0,1),V\sim\chi^2_v,T=\frac{z}{\sqrt{v/r}}\sim t_v zN(0,1),Vχv2,T=v/r ztv
f T ( t ; v ) = Γ ( v + 1 2 ) Γ ( v 2 ) 1 v π ( 1 + t 2 v ) − v + 1 2 f_T(t;v)=\frac{\Gamma(\frac{v+1}{2})}{\Gamma(\frac{v}{2})}\frac{1}{\sqrt{v\pi}}(1+\frac{t^2}{v})^{-\frac{v+1}{2}} fT(t;v)=Γ(2v)Γ(2v+1)vπ 1(1+vt2)2v+1
其中 E [ x ] = 0 , V a r [ x ] = v v − 2 E[x]=0,Var[x]=\frac{v}{v-2} E[x]=0,Var[x]=v2v

1.10 F分布

举例:https://zhuanlan.zhihu.com/p/36231309
v 1 ∼ χ 2 ( v 1 ) , v 2 ∼ χ 2 ( v 2 ) , F ( v 1 , v 2 ) = V 1 / v 1 V 2 / v 2 ; v_1\sim\chi^2(v_1),v_2\sim\chi^2(v_2),F(v_1,v_2)=\frac{V_1/v_1}{V_2/v_2}; v1χ2(v1),v2χ2(v2),F(v1,v2)=V2/v2V1/v1;
g ( x , v 1 , v 2 ) = Γ ( v 1 + v 2 2 ) Γ ( v 1 2 ) Γ ( v 2 2 ) ( v 1 v 2 ) v 1 2 x v 1 2 − 1 ( 1 + v 1 v 2 x ) − v 1 + v 2 2 g(x,v_1,v_2)=\frac{\Gamma(\frac{v_1+v_2}{2})}{\Gamma(\frac{v_1}{2})\Gamma(\frac{v_2}{2})}(\frac{v_1}{v_2})^{\frac{v_1}{2}}x^{\frac{v_1}{2}-1}(1+\frac{v_1}{v_2}x)^{-\frac{v_1+v_2}{2}} g(x,v1,v2)=Γ(2v1)Γ(2v2)Γ(2v1+v2)(v2v1)2v1x2v11(1+v2v1x)2v1+v2
其中 E [ x ] = v 2 v 2 − 2 , V a r [ x ] = 2 v 2 2 ( v 1 + v 2 − 2 ) v 1 ( v 2 − 2 ) 2 ( v 1 − 4 ) E[x]=\frac{v_2}{v_2-2},Var[x]=\frac{2v_2^2(v_1+v_2-2)}{v_1(v_2-2)^2(v_1-4)} E[x]=v22v2,Var[x]=v1(v22)2(v14)2v22(v1+v22)

1.11 Beta分布

贝塔分布 ( B e t a D i s t r i b u t i o n ) (Beta Distribution) BetaDistribution)是一个作为伯努利分布和二项式分布的共轭先验分布的密度函数,在概率论中, β \beta β分布,也称Β分布,是指一组定义在(0,1) 区间的连续概率分布。
B e t a ( μ ∣ a , b ) = Γ ( a + b ) Γ ( a ) Γ ( b ) μ a − 1 ( 1 − μ ) b − 1 Beta(\mu|a,b)=\frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1} Beta(μa,b)=Γ(a)Γ(b)Γ(a+b)μa1(1μ)b1
其中期望和方差为 E [ μ ] = a a + b , V a r [ μ ] = a b ( a + b ) 2 ( a + b + 1 ) E[\mu]=\frac{a}{a+b},Var[\mu]=\frac{ab}{(a+b)^2(a+b+1)} E[μ]=a+ba,Var[μ]=(a+b)2(a+b+1)ab

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值