线段树:擅长处理区间的数据结构,对区间的操作(1.查询 2.更新)可以在O(logn)时间内完成;
代码:(基于线段树的RMQ)
const int INF=0x3f3f3f3f;
const int maxn=1<<17;
//存储线段树的全局数组;
int n,dat[2*maxn-1];
//初始化
void init(int n_)
{
//为计算方便,元素个数扩大为2的幂;
n=1;
while(n<n_) n*=2;
for(int i=0;i<2*n-1;i++)
dat[i]=INF;
}
//n_个元素的初始化:for(int k=0;k<n_;k++) update(k,a[k]);
//把第k个值(从0开始)更新为a;
void update(int k,int a)
{
k+=n-1;
dat[k]=a;
//向上更新;
while(k>0)
{
k=(k-1)/2;
dat[k]=min(dat[2*k+1],dat[2*k+2]);
}
}
//求[a,b)的最小值;
//后面的参数是为了计算方便传入的;
//k是节点的编号,l,r表示这个节点对应的是[l,r)区间;
//外部调用时,用query(a,b,0,0,n);
int query(int a,int b,int k,int l,int r)
{
//如果[a,b)和[l,r)不相交,则返回INF;
if(r<=a||b<=l) return INF;
//如果[a,b)完全包含[l,r),则返回当前节点的值;
if(a<=l&&r<=b) return dat[k];
else{
//否则返回两个儿子中值的较小者;
int vl=query(a,b,k*2+1,l,(l+r)/2);
int vr=query(a,b,k*2+2,(l+r)/2,r);
return min(vl,vr);
}
}