线段树

线段树:擅长处理区间的数据结构,对区间的操作(1.查询  2.更新)可以在O(logn)时间内完成;


代码:(基于线段树的RMQ)

const int INF=0x3f3f3f3f;
const int maxn=1<<17;

//存储线段树的全局数组;
int n,dat[2*maxn-1];

//初始化
void init(int n_)
{
     //为计算方便,元素个数扩大为2的幂;
     n=1;
     while(n<n_)  n*=2;
     for(int i=0;i<2*n-1;i++)
          dat[i]=INF;
}

//n_个元素的初始化:for(int k=0;k<n_;k++)   update(k,a[k]);
//把第k个值(从0开始)更新为a;
void update(int k,int a)
{
       k+=n-1;
       dat[k]=a;
       //向上更新;
       while(k>0)
       {
             k=(k-1)/2;
             dat[k]=min(dat[2*k+1],dat[2*k+2]);
        }
}

//求[a,b)的最小值;
//后面的参数是为了计算方便传入的;
//k是节点的编号,l,r表示这个节点对应的是[l,r)区间;
//外部调用时,用query(a,b,0,0,n);
int query(int a,int b,int k,int l,int r)
{
      //如果[a,b)和[l,r)不相交,则返回INF;
      if(r<=a||b<=l) return INF;
      
      //如果[a,b)完全包含[l,r),则返回当前节点的值;
      if(a<=l&&r<=b) return dat[k];
      else{
            //否则返回两个儿子中值的较小者;
            int vl=query(a,b,k*2+1,l,(l+r)/2);
            int vr=query(a,b,k*2+2,(l+r)/2,r);
            return min(vl,vr);
       }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值