Advanced Planning and Scheduling 高级计划与排程 简介

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

关于APS(高级计划与排程 )系统,历史,从20世纪60 年代中期 , IBM 开发了基于产品结构分解的MRP系统,并在 70 年代发展为闭环 MRP系统 ,除了物料需求计划外 ,还将生产能力需求计划、车间作业计划和采购作业计划也全部纳入 MRP ,形成一个封闭的系统。这为 80 年代 MRPII的出现奠定了基础,但实际上MRPII的这种闭环因是预设提前期、无限制的产能计划排产与无约束的物料计划,故只能是手工闭环,难以匹配实际复杂动态的制造环境。这段时间 ,模拟技术开始进入计划领域,基于模拟的计划工具开始出现;而到了80年代初 , 轮胎制造商Kelly Springfield 和烟草公司 Philip Morris 开始应用计划和排程系统。随后快速MRP的模拟技术,能将复杂的生产作业模拟在独立计算机上,部分采用以常驻内存方式进行批处理运算,脱离了当时占业务计算支配地位的主机,使制造企业完成生产计划排程只用几小时而不是当时所公认的20多个小时,大大缩短了计划运行时间。(参照 1高级排程计划APS发展综述. 运筹与管理.2004 )
1984年AT&T推出的 Karmarkar’s 算法,成为线性规划突破性进展,这个新技术解决了线性规划的问题,是AT&T作为“真正的突破”和“设计解决了以前未解决的问题”。AT&T把这个算法绑定他们的计算机,价格达到了天价般的九百万美元!APS成为新兴企业管理者的宠儿。许多大型化工公司巴斯夫等都开始积极使用计划和排程的工具, 甚至连许多大的航空公司如美航也实施了复杂的计划和排程系统。而数据库技术SQL的引进,允许APS工具和关系型数据库更动态的互动。APS开始攻城略地了。1990年初,消费品公司(CPG)开始引入APS系统,他们需要更复杂的系统;电子装配、金属品制造等离散制造领域被i2、Fastman打开洞门,蜂拥而进入。半导体领域如IBM、Intel、TI、Harris公司等成为APS发展的重要推手。其中i2公司以彪悍的市场导向和销售战略,戏剧性地提高了APS的发展空间。
随着APS引擎的成熟,使理论化的数学解析计划方法达到了实用程度,生产计划方法交替,ERP也出现了继续完善和功能扩充以及改变ERP的功能和性质这两种发展趋势。随着APS市场的快速成长,产生了ERP供应商的新一轮的收购APS公司或自己内部开发APS。许多专家认为APS必须嵌入ERP系统,一些厂商也开发了APS模块。近些年来,几乎每个外国的ERP软件,都有了与之集成的APS引擎。如SAP 有了 SAP APO (Advanced Planning and Optimization), Baan 有Baan SCS (Supply Chain Solutions), Oracle 买了ILOG的产品, PeopleSoft 购买了Red Pepper,JD Edwards 买了Numetrix,ERP和APS正在融合在一起。同样,MES也在把APS纳入自己的制造板块,如GE 收购了合作伙伴Novotech的Scheduler, 西门子收购了Preactor,钢铁行业MES 巨头PSI兼并了钢铁行业的APS Broner。
APS 的主要目标是某一指标(例如 设备资产回报率ROA) 的总优化。这需要预先假定供应链的结构和其各种不同的资源和边界情况(例如能力限制)必须是可见的。实际上,APS 工具是以供应链的跨组织模型为基础的。这也是在数字化制造下,APS越加显得耀眼的原因。 [参考信息化高级排程系统APS的应用.工业控制计算机.2015]
说到优化算法和排产软件,就不得不提大名鼎鼎的ILOG(现隶属于IBM旗下)和大名鼎鼎的Cplex。Cplex是IBM公司一款高性能的数学规划问题求解器。Cplex被许多公司做为APS的核心引擎,如ILOG的 PPO,SAP的APO,i2的优化软件。此外国外APS品牌有Asprova、FlexSche 、Preactor(西门子)、AspenTeech、Quintiq等。而国内有施达优、安达发、兰光创新、永凯、元工国际等产品。
APS的核心是优化算法,已经走过四代。最新第四代是智能算法融合人工智能动态调整算法,以智能算法进行静态排程,以多Agent代理协商进行分布计算动态调整。迄今为止,以MPS和MRP运算为核心思想的计划管理已经成为现代企业ERP的标准和核心功能,但是从几十年的应用效果看,依然难以满足企业的计划管理需求。其实MPS主生产计划和MRP物料需求计划的体系与方式,已很难适应按需生产环境,尤其无法适应大规模个性化定制的工业4.0时代。而APS可以综合考虑产能、工装、加工批次等约束,并能结合MES实现滚动排产。这也说明了,为什么在工业4.0时代,MES和APS系统,成为比ERP要耀眼得多的明星。APS分为供应链级的APS和工厂级的APS两类。而制造执行系统MES,最早期用于车间控制、管理工作中心,并下达派工单,主要靠手工汇报进度和工时;随着制造精益化,制造数字化,形成了MES制造执行系统。因此二者在智能排产功能是有重叠的。**当下作为代表当今先进管理思想的高级计划排程系统,APS的核心是久经磨练的数学算法或解决方案。**在数字化经济,APS的发展呈现多元化的趋势一个是与ERP、MES更加紧密结合。
值得注意的是,APS的数据来源正在发生变革。APS数据如i2,Oracle的APS,都源自于ERP;而随着MES的普及,生产系统同样成为一个巨大的数据池源发地。这对于APS是一个全新的发展机遇。一个是与多品种小批量订单制造和项目制造结合:实际上,只有APS才能实现多品种小批量的个性化定制计划模式。同样值得注意的是云平台化,由于APS的服务的间歇性,造成购买的高昂的核心算法和服务器运行时间的闲置,为此,将APS云平台化可以大大降低企业的计划排产的投资,国内外已经有企业在部署SaaS的APS。值得注意的是,APS的数据来源正在发生变革。APS数据如i2,Oracle的APS,都源自于ERP;而随着MES的普及,生产系统同样成为一个巨大的数据池源发地。这对于APS是一个全新的发展机遇。一个是与多品种小批量订单制造和项目制造结合:实际上,只有APS才能实现多品种小批量的个性化定制计划模式。同样值得注意的是云平台化,由于APS的服务的间歇性,造成购买的高昂的核心算法和服务器运行时间的闲置,为此,将APS云平台化可以大大降低企业的计划排产的投资,国内外已经有企业在部署SaaS的APS。尽管APS具有强大的功能,非常适合于供应链整体计划问题的解决,但在我国企业管理实际中,APS应用仍然存在很多需要解决的问题。例如APS功能的发挥主要在供应链管理上,而我国企业的供应链管理还停留在非常初级的阶段,企业对于供应链竞争的意识还很模糊,因此,APS难以找到真正的用武之地。而企业内部信息化基础数据、流程、计划体系薄弱。APS的运行需要有ERP、MES、PLM等系统提供的数据支持。此前,很多APS项目实施效果不好的原因大多是因为没有MES帮助APS实现闭环和滚动排产,导致计划兑现率较差。尽管如此,随着市场针对大规模个性化定制的需求不断的增加,APS已经逐渐成为离散制造行业智能工厂的重要中枢。在一些行业,如按照分组加工的烟草行业、大规模个性化生产的汽车和家电行业,如果没有APS,人工已经很难基于经验进行计划的编制工作。随着,个性化需求逐渐成为市场主流需求,预计未来三到五年内,APS 在我国的应用将开始进入大量实施阶段,成为智能工厂的指挥中心.


提示:以下是本篇文章正文内容,下面案例可供参考

一、供应链级APS与工厂级APS

供应链级APS是从集团或供应链层面进行计划优化,包括面向生产制造领域的供应链网络设计、需求计划、供应链计划、多级库存优化、多工厂主生产计划和详细排产,以及物流、设施、人员的计划与优化。
工厂级APS基于有限产能约束,从生产运营维度帮助企业更合理的规划订单交期承诺、生产均衡计划、生产排产、优化换型时间、优化物料配送等,并将结果下达到MES系统。
那供应链APS更侧重于SCP供应链计划的优化,包括网络配置计划、需求计划、库存计划、多工厂计划、供应链计划的优化,反之工厂级APS更侧重于订单交货期的承诺、计划与排产、加工顺序调度、物料的准时配送等。

二、APS的常见算法

一、基础约束理论的有限产能算法。
二、基于优先的算法、线性规则来启发规则的算法、专家系统、
三、智能的算法以及遗传算法去模拟退火算法粒子算法神经网络。
四、智能算法融合人工智能动态调整算法可以将智能算法进行静态排程。

三、生产计划
生产计划是企业对生产任务作出统筹安排,具体拟定生产产品的品种、数量、质量和进度的计划。
生产计划是指一方面为满足客户要求的三要素“交期、品质、成本”而计划;另一方面又使企业获得适当利益,而对生产的三要素“材料、人员、机器设备”的确切准备、分配及使用的计划。
生产计划的时候我们会考虑:1、做什么? 2、什么时候做?3、哪里去做?4、确定物料需求? 5、确定资源需求 6、提前期:天、周、月(季度、年)
四、生产模式与生产计划
MTO:(Make-to-Order): 按订单生产.特点 高准交、短交期、低库存;
MTO排产方式:追逐式、顺排
MTS(Make-to-Stock): 按库存生产 特点 不断货、低库存
MTS排产方式:均衡式、倒排、混合式、瓶颈排

名词解释:
1、顺排:从已知的可能开始时间开始计算作业的完成时间的排程方法。通常从工件的第一道工序开始到最后一道工序为止,产生的是最早时间作业计划。
2、追逐式:定义:计划生产数量等于实际需求数量。目标:维持稳定的库存水平(最高目标是库存为零)。优点:稳定的库存水平,以变化的生产来满足客户需求。缺点:雇佣,培训,解雇,加班(延长工作时间,增加班次)的成本费用,频繁的招聘和解雇,影响员工的士气,工作技能的无效性,需要配置最大的产能。
3、均衡式:所谓均衡生产,是指在完成计划的前提下,产品的实物产量或工作量或工作项目,在相等的时间内完成的数量基本相等或稳定递增。
4、倒排:倒排程(back scheduling)的一般过程是从交货期开始,使用提前期向前计算每个作业的开始日期。
5、混合式:混排生产是多种产品同时生产时,要达到品种之间的混排,如某条生产线可以同时生产A,B,C,D四种品种产品,混排生产不是按A,B,C,D依序生产而是以A(2),B(2),D(1),C(3)为一循环的方式生产,混排生产不仅考虑客户的需求品种,也要考虑品种之间的生产的相似度来达到客户需求与生产效率的化。
6、瓶颈:基于次要任务选择规则的排列。向前和向后方法来计划所有未分配的任务订单。重点是瓶颈资源的工序的。双向模式只计划需要指明瓶颈资源的任务。能用任何可得到的规则计划剩余任务。
五、常见的排产规则
一、基于订单(Job Based)排程方法
基于订单的优先级决定下一个订单的加工,可以自动识别订单的优先级和手工定义优先级,在计算机自动的根据规则的优先级排出生产计划后,还可以手工介入,修改优先级进行重排,以满足复杂的现实的需要。
基于订单(Job-based)约束规则如下:
(1)瓶颈:基于次要任务选择规则的排列。向前和向后方法来计划所有未分配的任务订单。重点是瓶颈资源的工序的。双向模式只计划需要指明瓶颈资源的任务。能用任何可得到的规则计划剩余任务。
(2)完成日期:基于最早完成日期。
(3)先到先服务:按照先到订单,先安排生产。
(4)升序订单属性值:按规定的订单升序的值排列。订单的属性可以是数值,字母。
(5)优先级:按照最小数值优先。如果你用此规则,优先级字段必须在订单上定义。
(6)加工时间:按照订单最小的加工时间优先。
(7)下达日期:按照最早开始日期优先。
(8)相反优先级:按照最大数值优先。如果你用此规则,优先级字段必须在订单上定义。
(9)闲散时间:按照最小闲散时间优先。
二、基于事件(Event Based)的排程方法
是基于高利用率的方法。实现其计划的关键是二步导向的规则使用。有二个基本的规则:(1)工序选择规则OSR
(2)资源选择规则RSR
*。
针对不同产品和资源,必须选择不同的规则,在决定是使用工序选择规则或资源选择规则时,主要考虑的是什么是一个好的标准?一旦确定你的目标,你就可以选择工序和资源选择规则来完成目标。
一般来说,先选择工序选择规则,然后选择合适的资源选择规则。在一些情况下,有关的资源选择规则被工序选择规则所决定。
工序选择规则OSR( Operation Selection Rule)
至少一个资源是空闲的,二个或多个工序能用于这个资源,采用OSR。此规则决定那一个工序被加载。这就是决定计划结果质量好坏的关键因素。独立的工序选择规则详细介绍如下:
(1)最早完成日期:选择最早完成的工序(也许是订单完成日期)
(2)最高优先级第一:选择最高优先级(最低值)的工序
(3)最低优先级第一: 选择最低优先级(最高值)的工序
(4)最高订单属性字段:选择最高(最大)订单属性字段的工序
(5)最低订单属性字段: 选择最低(最小)订单属性字段的工序
(6)动态最高订单属性字段:选择动态最高(最大)订单属性字段的工序
(7)动态最低订单属性字段: 选择动态最低(最小)订单属性字段的工序
(8)计划档案订单:选择订单里出现先到先服务的工序
(9)关键率:选择最小关键率的工序。关键率=剩余计划工作时间/(完成日期-当前时间)
(10)实际关键率:选择最小实际关键率的工序。实际关键率=剩余实际工作时间/(完成日期-当前时间)
(11)最少剩余工序(静态):选择最少剩余工序时间的工序
(12)最长等待时间:选择最长等待时间的工序
(13)最短等待时间: 选择最短等待时间的工序
(14)最大过程时间:选择最大过程时间的工序
(15)最小过程时间: 选择最小过程时间的工序
(16)最小工序闲散时间:选择最小工序闲散时间的工序。订单任务的闲散时间=任务剩余完成时间-剩余工作时间。工序闲散时间=任务闲散时间/完成任务的剩余工序数
(17)最小订单闲散时间:选择最小订单任务的闲散时间的工序
(18)最小工作剩余:选择所有需要完成订单的最小剩余过程时间的工序。
资源选择规则(RSR) Resource Selection Rule
RSR选择工序加载到资源组内的哪一资源。
(1)最早结束时间:选择将要最先完成工序的资源
(2)最早开始时间: 选择将要最先开始工序的资源
(3)最迟结束时间: 选择将要最迟完成工序的资源
(4)与前工序一样: 选择被用于前一工序的资源
(5)非瓶颈最早开始时间:选择将要最早开始工序的非瓶颈资源
相关选择规则:
如果选择一工序选择规则,就自动的选择相应的资源选择规则。
(1)系列顺序循环:选择同样或下一个最高(最低)系列值的工序。当没有最高值的工序,顺序将相反,选择最低的工序。
(2)系列降顺序:选择同样或下一个最低系列值的工序
(3)系列升顺序: 选择同样或下一个最高系列值的工序
(4)最小准备系列: 选择最小准备时间及最近的系列值的工序。
(5)最小准备时间: 选择最小准备或换装时间的工序
(6)定时区的系列顺序循环:选择同样或下一个最高(最低)系列值工序。且只考虑在特定的时区里的订单完成日期里的工序。当没有最高值的 工序,顺序将相反,选择最低的工序。
(7)定时区的系列降顺序:选择同样或下一个最低系列值工序。且只考虑在特定的时区里的订单完成日期里的工序。
(8)定时区的系列升顺序:选择同样或下一个最高系列值工序。且只考虑在特定的时区里的订单完成日期里的工序。
(9)定时区的最小准备系列:选择最小准备时间及最近的系列值的工序。且只考虑在特定的时区里的订单完成日期里的工序。
(10)定时区的最小准备时间:选择最小准备或换装时间的工序,且只考虑在特定的时区里的订单完成日期里的工序。
三、基于物料约束(Material Constrain)
当生产计划想要计划一个需要某物料的工序时,它将仅仅计划库存水平足以满足当时或以后的工序。如果在计划时区不能满足条件,物料约束计划将首先查看是否有未分配的定单,产生库存需求。如果它找到这样的定单,它将首先计划定单,然后计划工序的库存需要。如定单产生库存需求另外的未有的库存,物料约束计划将象以前一样寻找定单来计划。这个过程将重复许多次。如果有不够,就需要库存补充。
静态物料约束规则(SMC)
先对每一个物料从ERP系统导入建立可用量清单,最早开始的订单和被分配的物料,随着物料业务,订单日期的延迟,或变化,系统会自动调整或显示订单的变化。
动态物料约束规则(DMC)
当计划建立时,动态分配物料,允许重新分配物料到另外的一个订单,它可以处理物料的有效期,变化的产出率,和减少在制品等实际问题。
取出库存成套约束(Take from stock kit)
定义在一工序需要的子项。 在我们做计划时,考虑子项物料从库存的可用量的约束来排计划。
放入库存成套约束(Put to stock kit)
定义从工序的父项产出结果。在我们做计划时,考虑产出的约束,必须考虑库位所能容纳的约束。
生产计划根据产品结构的相关性来分配物料的约束,查询约束可以按物料编码报物料约束。也可以按订单号报告物料约束。工具约束:工具子项反映关键工具作为资源,也可以作为约束物料,如你可以定义工具产生约束,如工具维修,故障。
总之,制造业对客户需求的响应越来越强烈。 现在生产计划调度系统正开始将基于约束规则基因搜寻和模拟仿真模式结合起来,解决制造同步化问题和工厂的顺序冲突问题。
现在,约束计划已经成功应用到许多不同问题领域。它和分析DNA结构一样多样化。对医院的时间表和工业的排程。实践证明它能较好适应解决现实的问题。因为,许多应用领域自然的需要约束。分派问题也许是第一个工业应用约束解决工具。用甘特图来描述计划可能是最成功的应用领域如有限约束排程。
在现实中,约束计划可以广泛的运用,但是当前的工具也有可能没有涉及到的领域或局限和缺点。无论是从理论上,还是实际的观点来看,约束的定义促使问题可追踪是非常重要的,约束计划的有效性仍然是不可预测的:何时,如何使用约束。通常直觉是决策的最重要的部分。有时,盲目的快速搜寻如按时间顺序后排比约束进化(基因算法)更有效。在许多约束模型里的特别问题是成本优化。有时,它是对改善起初的方案是非常困难的。且一个小的改善就会花去很多时间。
约束计划也在不断的进化,它们能动态的增加约束。大部分情况下,约束系统产生的计划是可执行的。除了机器故障,延迟的计划,在最坏的情况下,新订单的接受。这是需要快速的重排计划或提高当前的方案来解决未预料的事件。同时,在通常较紧计划优化的方案和可以解决较少差异的,稳定的,次优化的方案之间交替选择。
当前的约束满意系统的缺点标志着未来研究发展方向,在它们之间,建模看上去是最重要的之一。已经开始讨论使用全局约束,把主要的约束预先设置到软件包。(如所有不同的约束规则)。目前,建模语言较多的使用ILOG公司的(ILOG Solver)来表示约束问题。(如名列前矛的商业管理软件供应商均采用此技术)
从较低层次的观点,可视化的技术越来越流行,他们帮助定义系统的瓶颈。各种约束解决方法的交互研究是最具挑战的问题之一。混合算法结合各种约束技术是这个研究的结果。另外感兴趣的研究领域是解决协同和对应的结合的理论。约束满意技术和传统的OR(Operation Research)方法如整数规划是另外的挑战。研究平行和并行的约束已作为提高效率的方法,在这些系统里,多层代理技术可能是最有前景。
但是,随着车间物联网、工业大数据的成熟,通过定位系统的场景化,嵌入式规则或算法和传感器,可以做到分布式控制,使得排产调度更加灵活与智能化。

工序选择规则的分析

标准的工序选择规则有二十多个标准规则,不同的规则对应不同的目标。这些规则可以进一步分成静态与动态的规则。
静态规则:为所有在排队中的订单,所有等待的工序提供一简单的索引机制。这些规则在每一次预先模拟时间时不需要再次评估。用于工序选择规则的参数是固定的。例如规则是最早完成日期规则,完成日期在顺序排程中从未改变。在排队中的第一个工序被分配到一等待资源。因为规则总是选择第一个等待工序,此规则执行的非常快。
动态规则:每一个在排队的工序被每一次调用的规则检查。因此,我们是基于当前的订单任务和系统的状态决定我们的选择。这个机制充分考虑了任何改变出现的时间和事件的结果。例如,最小工序空闲规则,因为工序的空闲值随时在改变。因为动态选择规则需要在每一次事先模拟以后检查在排队中的每一个工序,它比静态规则要慢一些。
为有助于分析规则,我们对规则进行分类。分成四个主要类别来对应四个不同的计划目标。它们是1、预先确定任务的参数。2、最小化任务缓慢。3、最小化任务流程时间。4、最大化设备利用率。
我们将讨论每一个核心目标和相应的工序及资源规则以支持这些目标。规则的分类目的是帮助你为达到你的核心目标而缩小你的规则的选择。对某一类的规则选择是基于你的计划问题。每一个类别的规则都混合一些静态和动态的规则。
预先确定订单任务的参数:是基于预先定义订单任务的优先级来选择下一个工序或用户规定的属性字段(如成本)。一般来说,每一个规则由特性的最高,最低的值被调用。这类包括最高优先级,最低优先级,最高订单特性字段,最低订单特性字段,动态最高订单特性字段,动态最低订单特性字段,计划档案订单,最长等待时间,最短等待时间,和最大过程时间。最高优先级和最低优先级是分别用最高或最低优先级选择工序的静态规则。
最高订单特性字段,最低订单特性字段是和优先级规则相似的静态规则,除了基于用户定义属性的选择。例如。最高订单特性字段规则用一个属性字段定义,如由成本的最高值来选择任务。因为这是一个静态规则,它假设当订单任务正在等待处理时成本是不变的。
动态最高订单特性字段,动态最低订单特性字段规则是动态的。虽然这些规则执行较慢,它们也适应当订单任务正在等待时属性字段可以改变的情况。
计划档案订单规则是一静态规则,是基于已进入数据库的订单来选择订单。这个规则和先到先服务规则相似。
最长等待时间,最短等待时间规则是一动态规则,它是基于订单任务被等待计划的时间来选择工序。
最大过程时间规则是用最大过程时间来选择工序。预先确定任务的参数规则一般用于订单任务的特性的情况。(如优先级或成本),不考虑任务完成日期或设备利用率。因为这些规则忽略完成日期,它们典型更适应面向库存生产(MTS)环境,而不是面向订单生产环境(MTO)。
最小化任务延缓:在许多面向订单生产环境(MTO),计划目标是保证每一个订单任务按期完成。 最小化任务延缓的规则是建立一最小化延缓任务的计划。这类规则包括最早完成日期,最小化运行闲散时间,最小化订单闲散时间,关键率,和实际关键率。这些规则的最简单的是最早完成日期。这是一静态规则。虽然这个规则执行的非常快。这一类所有的规则是基于空闲时间计算的动态规则。空闲时间是完成日期和最早完成时间的差异。
最小订单闲散时间规则选择一个父项任务的工序,父项任务有最小的闲散时间。如它没被选择,这个订单任务大多可能是延迟的。
最小运行闲散时间规则是基于每一个工序的平均闲散时间(订单任务计算的闲散时间/剩余工序数量)而不是任务的剩余闲散时间。这个基于闲散时间的规则形成的基本想法是每一个剩余工序有一固有的风险, 根据它延迟的可能性,每一个工序的最小闲散时间的订单任务是最关键的。因此,如果我们在同样的闲散时间中选择订单任务,我们会选择最大剩余工序数量的订单任务,因次,根据每个工序最小闲散时间的规则来选择处理风险最大的订单任务。
基于闲散时间规则的最后的差异是关键率。这个规则选择父项任务有最大关键率的工序。关键率是剩余工作时间/(剩余工作时间+闲散时间)。注意只要闲散时间是正的数,分母大于它,关键率就小于1。就此,任务还没有延迟。如果关键率大于1,闲散时间是负数,任务就不能按期完成。关键率规则与最小工序闲散时间规则相似。相同的是,它们都是用闲散时间来计算的。不同的是它的剩余工作已完成。它的基本的前提是剩余闲散时间本身在决定最关键订单任务时并不重要,即相关的剩余工作已完成。如我们有许多剩余工作,那么,我们需要较大的闲散时间来保证我们的订单任务不能延迟。
最小化任务过程时间:在一些环境,关键问题是计划设备的效率来最小化订单任务的平均时间。在最小化任务过程时间规则里忽略任务完成日期而集中于减少订单任务的时间。这类规则包括最小化流程时间,最少剩余工序,最小工作剩余。这类规则是基于过程时间最短的概念,减少所有订单任务的平均任务过程时间。
如果有许多机器和许多不同的订单任务的应用就较复杂。不管怎样,这类规则都是用同样的概念-最短处理任务的时间,仅仅不同的它是怎样决定最短任务。最小化处理时间规则是静态规则,用最短工序时间选择工序。最小化工作剩余规则是动态规则,它是基于父项任务的最小剩余工作选择工序。剩余工作是对所有任务的剩余工序的合计时间。最小化过程时间规则检查单一工序的加工时间,而最小化工作剩余规则检查所有的剩余工序的加工时间。最少剩余工序规则和最小剩余工作规则相似,除了这个规则是基于剩余工序数量而不是过程时间的合计。
最大设备能力:在一些面向库存生产的环境(MTS)中,关键的问题是设备效率。即最大化整个设备的生产能力。在最大化设备能力规则里忽略任务的完成日期而集中于设备的能力效率来产生计划。这类规则包括最小准备时间,系列顺序升UP, 系列顺序降DOWN, 系列顺序周期,和用系列的最少准备。另外,每一规则都与时间相连。所有这类规则都集中于减少转变成本,最大化的设备能力。这个转变成本能在一顺序相关的准备时间中设置。我们正努力消除设备的任何没有必要的非生产时间。
如果我们为整个工序的排序, 在连续的工序之间,要考虑顺序相关的准备时间及转变成本,此时,我们就能用系列规则。
在混合油漆中,我们在定义好的顺序中一般要逐渐从淡色移动到深色。如从深色移动到淡色时,就有整个清洗混合的油箱的准备时间即转变成本。在一些情况下,我们有事先规定好的顺序。例如,我们也许要处理颜色顺序A,B,C,,D,E的订单,这就称为系列顺序。如果我们刚要加工颜色A,我们会首先寻找有颜色A的其它订单。如没有,我们会寻找颜色B的订单,依此顺序,等等。系列规则提供这个能力。这些规则允许我们规定一个系列值。(如油漆颜色,温度,等等)。每一个订单/工序及动态建立系列,或自动的增加,减少,或使系列值上下循环。
在增加系列的情况下,系列升顺序规则选择一系列值并大于或等于被选择工序的系列值的工序。如,如果我们建立一零件尺寸的增加系列值,规则选择同样或下一个最大尺寸的工序。如等待工序没有同样或大的值,规则就开始一个新的系列顺序。系列降顺序规则也是类似的。
生产化工纤维材料时,根据产品的型号和厚度对品种进行分类,对品种的最优排产。如取最小值= { 3m/1。4m, 6m/1。4m,…。}来决定在哪个订单的加工顺序及哪个资源最经济。
系列顺序循环规则在增加顺序和减少顺序前后交替。如系列增加,它将继续增加,直到没有一样或较大的系列值订单剩余的订单。当这种情况出现,规则会转为减少系列值并开始选择有一样或较小系列值的订单。当所有这样的订单耗尽,它就回到增加系列的策略。这个规则以此方式继续,在增加和减少系列值之间重复循环。
在热处理时,温度是间隔的增加到最高,然后降低。最小准备系列规则结合最小准备时间规则和系列顺序循环规则。最小准备时间和最靠近的系列值的工序被选择。
定时的规则仅仅考虑任务完成日期正好落入规定的时区的工序。时区必须定义在数据库里。如,你要跟踪颜色的系列,但是,你仅想考虑在下一周的完成的订单任务。这个规则既要最小化颜色的改变。又要不能延迟订单任务。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值