参考链接:深度学习常用的Data Set数据集和CNN Model总结
一.LeNet-5
时间:1986年,参数大约6万
网络结构图:

LeNet-5网络模型(数字识别,2个卷积层,2个池化层,2个全连接层)

其中:C表示卷积层,S表示池化层,F表示全连接层,下标意为图像大小
卷积层:卷积核大小为5*5,步长stride=1
池化层:max pooling,采样2*2,步长stride=2
第一个卷积层6个filter,第二个卷积层16个filter
第一个全连接FC中有120个神经节点,每个结点有400个输入特征,即W=(120,400),b=(120,1),所以最后得到(120,1)。Z=WX+b,X=(400,1)
二.AlexNet
时间:2012年,大约6000万参数
网络结构图:

引入GPU,增加特殊层(LRN层,全称:Local

本文记录了从LeNet-5到Inception v4的CNN模型发展历程,包括AlexNet、ZF Net、VGG和ResNets等。重点讨论了Inception系列模型的设计理念,如1x1卷积用于降低计算成本,以及ResNets中的残差块解决深度学习中的退化问题。
最低0.47元/天 解锁文章
4775

被折叠的 条评论
为什么被折叠?



