U-Net: Convolutional Networks for Biomedical Image Segmentation

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, 2015: 234-241.

Abstract

这篇文章是生物学会议ICMICCAI2015的文章,主要针对的是生物影像进行分割。由于普遍认为深度学习需要大量的样本进行训练,而生物医学领域上的数据量比较少,所以本文提出了一种网络和训练策略,依靠数据增强等技巧有效的利用了有限的标签信息。该体系结构包括捕捉上下文的收缩路径(contracting path)和实现精确定位的对称扩展路径(symmetric expanding path)。实验表明,该网络结构可以在非常少的图像数据集上进行端到端训练。

代码复现也很多,贴几个代码链接:
Caffe:http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net.
Keras:https://github.com/zhixuhao/unet
Pytorch:https://github.com/czifan/unet.pytorch

Motivation

Ciresan, D.C., Gambardella, L.M., Giusti, A., Schmidhuber, J.: Deep neural net-
works segment neuronal membranes in electron microscopy images. In: NIPS. pp.
2852{2860 (2012)
Ciresan等人使用滑动窗口,提高围绕该像素的局部区域(补丁)作为输入来预测每个像素的类别标签。在这里插入图片描述
虽然该方法可以达到很好的精度,但是存在两个缺点:
在这里插入图片描述

网络结构

本文提出的网络,是全卷积网络,其中主要是想是通过逐层扩充来补充通常的收缩网络(下采样),其中pooling被unsampling操作代替(称之为上采样),这些层能够增加输出的分辨率。为了精准定位每一个像素,下采样和上采样路径中相同尺度的特征进行连接,整体架构如下图:
在这里插入图片描述

Training

  1. input/output:输入为572x572分辨率的图像,标签为388x388的分割图;
  2. batch size:为了最小化开销并最大限度地利用GPU内存,我们倾向于使用大的输入块而不是大的批处理大小,从而将批处理减少到单个图像,即batch_size设置为1;
  3. optimizer:SGD(随机梯度下降)优化器,其momentum(动量)设置为0.99,使得几乎所有之前训练的样本都能影响到当前训练样本的更新(我觉得就和batch size设置得比较大的效果应该是一样的);
  4. criterion:交叉熵损失函数,作者通过预先计算每个真实分割的权重图,来补偿训练集中不同类别的不同频率,并迫使网络学习我们的触摸单元之间引入的小分离边界。分离边界使用形态学操作来计算,计算权重图通过公式 w ( x ) = w c ( x ) + w 0 ∗ e x p ( − ( d 1 ( x ) + d 2 ( x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值