BPR贝叶斯个性化推荐算法—推荐系统基础算法(含python代码实现以及详细例子讲解)

BPR(贝叶斯个性化排序)是一种用于推荐系统的排序算法,尤其适用于处理隐式反馈数据。它通过最大化后验概率对物品进行排序,以确定用户可能更偏好的项。相较于基于评分的矩阵分解,BPR更关注于为用户找出优先级高的少量商品。本文将介绍BPR的基本原理,解释贝叶斯定理在推荐系统中的作用,并提供Python代码实现示例。
摘要由CSDN通过智能技术生成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值