# [leetcode 801] Minimum Swaps To Make Sequences Increasing

801Minimum Swaps To Make Sequences Increasing

We have two integer sequences A and B of the same non-zero length.

We are allowed to swap elements A[i] and B[i].  Note that both elements are in the same index position in their respective sequences.

At the end of some number of swaps, A and B are both strictly increasing.  (A sequence is strictly increasing if and only if A[0] < A[1] < A[2] < ... < A[A.length - 1].)

Given A and B, return the minimum number of swaps to make both sequences strictly increasing.  It is guaranteed that the given input always makes it possible.

Example:
Input: A = [1,3,5,4], B = [1,2,3,7]
Output: 1
Explanation:
Swap A[3] and B[3].  Then the sequences are:
A = [1, 3, 5, 7] and B = [1, 2, 3, 4]
which are both strictly increasing.


Note:

• A, B are arrays with the same length, and that length will be in the range [1, 1000].
• A[i], B[i] are integer values in the range [0, 2000].

/*
1） 定义两个DP数组 swap[i] 表示 如果交换第i个元素， 那么使得0<X<i 两个数组同时满足递增的最小交换次数之和。
not_swap[i] 表示如果不交换第i个元素，那么使得0<X<i 两个数组同时满足递增的最小交换次数之和。

2） 递推公式：
#1 if A[i - 1] < A[i] && B[i - 1] < B[i]，
then 如果此时选择不交换， 那么同样不需要交换 第i-1个元素 -> not_swap[i] = not_swap[i-1]

#2, A[i - 1] < B[i] && B[i - 1] < A[i]

*/
class Solution {
public int minSwap(int[] A, int[] B) {
int[] swap = new int[1000];
int[] not_swap = new int[1000];
swap[0] = 1;
for (int i = 1; i < A.length; ++i) {
not_swap[i] = swap[i] = A.length;
if (A[i - 1] < A[i] && B[i - 1] < B[i]) {
not_swap[i] = not_swap[i - 1];
swap[i] = swap[i - 1] + 1;
}
if (A[i - 1] < B[i] && B[i - 1] < A[i]) {
not_swap[i] = Math.min(not_swap[i], swap[i - 1]);
swap[i] = Math.min(swap[i], not_swap[i - 1] + 1);
}
}
return Math.min(swap[A.length - 1], not_swap[A.length - 1]);
}

}

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120