Maximum Sum Circular Subarray

Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty subarray of C.

Here, a circular array means the end of the array connects to the beginning of the array.  (Formally, C[i] = A[i] when 0 <= i < A.length, and C[i+A.length] = C[i] when i >= 0.)

Also, a subarray may only include each element of the fixed buffer A at most once.  (Formally, for a subarray C[i], C[i+1], ..., C[j], there does not exist i <= k1, k2 <= j with k1 % A.length = k2 % A.length.)

 

Example 1:

Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3

Example 2:

Input: [5,-3,5]
Output: 10
Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10

Example 3:

Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4

Example 4:

Input: [3,-2,2,-3]
Output: 3
Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3

Example 5:

Input: [-2,-3,-1]
Output: -1
Explanation: Subarray [-1] has maximum sum -1

 

Note:

  1. -30000 <= A[i] <= 30000
  2. 1 <= A.length <= 30000

题目理解:

给定一个循环数组,即A[i]=A[i % length],找到这个循环数组的拥有最大和的子数组

解题思路:

循环数组的子数组一共有两种情况:

A[i],A[i+1],...A[j]                           j > i

A[j],A[j+1],...A[length]和A[0],A[1],...A[i]           j > i

前一种情况直接用动态规划求解,dp[i]表示从A[0]开始,包含A[i]的子数组的最大和

dp[i] = max{dp[i-1] + A[i], A[i]}

然后在所有dp[i]中找到最大值即可

后一种情况只需要计算forward[i]和backward[i],forward[i]表示从A[0]开始并且包含A[0],最多到A[i]的最大数组和,backward[i]表示从A[length]开始并且包含A[length],往前最多到A[i]的子数组和,遍历所有的i,

res[i] = fordward[i] + backward[i+1]

然后在所有的res[i]中找到最大值即可

最后在两种情况中找到最大值

代码如下:

class Solution {
    public int maxSubarraySumCircular(int[] A) {
    	int len = A.length;
        int[] forward = new int[len];
        for(int i = 0; i < len; i++) {
        	if(i == 0)
        		forward[i] = A[i];
        	else {
        		forward[i] = Math.max(A[i], A[i] + forward[i - 1]);
        	}
        }
        int[] backward = new int[len];
        for(int i = len - 1; i > -1; i--) {
        	backward[i] = A[i];
        	if(i + 1 < len)
        		backward[i] += backward[i + 1];
        }
        for(int i = len - 2; i > -1; i--) {
        	backward[i] = Math.max(backward[i], backward[i + 1]);
        }
        for(int i = 1; i < len; i++) {
        	A[i] += A[i - 1];
        }
        int res = Integer.MIN_VALUE;
        for(int i = 0; i < len; i++) {
        	int cur = forward[i];
        	int cir = A[i];
        	if(i + 1 < len && backward[i + 1] > 0)
        		cir += backward[i + 1];
        	cur = Math.max(cur, cir);
        	res = Math.max(res, cur);
        }
        return res;
    }
}

对于后一种情况,有一种更加简单的方法,即如果A[j],A[j+1],...A[length]以及A[0],A[1],...A[i]的和最大,那么A[i],...A[j]一定是循环数组中和最小的子数组,因此只要用前面用到的动态规划算法计算一遍最小和数组,然后用整个数组的和减去即可

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个经典的 Maximum Sum 子数组问题的动态规划代码: ```python def max_sum_subarray(nums): if not nums: return 0 n = len(nums) dp = [0]*n dp[0] = nums[0] max_sum = nums[0] for i in range(1, n): dp[i] = max(dp[i-1]+nums[i], nums[i]) max_sum = max(max_sum, dp[i]) return max_sum ``` 该算法的时间复杂度为 $O(n)$,其中 $n$ 是数组的长度。 ### 回答2: Maximum sum问题是一个经典的动态规划问题,其目标是在一个给定的数组中找到一个具有最大和的子数组。 在解决这个问题时,可以定义一个一维动态规划数组dp,其中dp[i]表示以第i个元素结尾的子数组的最大和。那么,可以得出动态规划的转移方程如下: dp[i] = max(dp[i-1] + nums[i], nums[i]) 其中,nums表示给定的整数数组。 接下来,可以使用一个变量maxSum来记录所有子数组的最大和。遍历整个数组,更新dp[i]的同时,不断更新maxSum的值,即可得到最终的结果。 下面是该问题的动态规划代码实现: ```python def maxSum(nums): dp = [0] * len(nums) maxSum = float('-inf') dp[0] = nums[0] maxSum = max(maxSum, dp[0]) for i in range(1, len(nums)): dp[i] = max(dp[i-1] + nums[i], nums[i]) maxSum = max(maxSum, dp[i]) return maxSum ``` 该算法的时间复杂度为O(n),其中n为数组的长度。使用动态规划的思想,可以高效地解决Maximum sum问题。 ### 回答3: 动态规划(Dynamic Programming)是一种常用的算法思想,可以解决一些最优化问题。Maximum Sum问题是一种经典的动态规划问题,目标是找出一个数组中最大的子数组和。 要编写Maximum Sum的动态规划代码,可以按照以下步骤进行: 1. 首先定义一个变量max_sum,用于记录当前最大的子数组和,初始化为数组中的第一个元素(即max_sum = arr[0])。 2. 然后定义一个变量cur_sum,用于记录当前的子数组和,初始化为数组中的第一个元素(即cur_sum = arr[0])。 3. 接着,使用一个循环遍历数组中的每一个元素(从第二个元素开始): (1)如果当前子数组和cur_sum加上当前元素arr[i]大于当前元素arr[i]本身,说明加上当前元素后,子数组和变得更大,因此更新cur_sum为cur_sum + arr[i]。 (2)否则,当前元素arr[i]比当前子数组和cur_sum更大,说明当前元素作为新的起点,重新开始构建子数组,即令cur_sum = arr[i]。 (3)将当前子数组和cur_sum与当前最大的子数组和max_sum进行比较,如果cur_sum大于max_sum,则更新max_sum为cur_sum。 4. 最后,返回最大的子数组和max_sum作为最终结果。 下面给出这个算法的代码实现: ```python def maximum_sum(arr): max_sum = arr[0] cur_sum = arr[0] for i in range(1, len(arr)): if cur_sum + arr[i] > arr[i]: cur_sum += arr[i] else: cur_sum = arr[i] if cur_sum > max_sum: max_sum = cur_sum return max_sum ``` 这段代码的时间复杂度为O(n),其中n为数组的长度,因为需要遍历整个数组。在使用动态规划思想解决Maximum Sum问题时,可以通过定义合适的状态和状态转移方程来简化问题,并提高算法的效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值