牛顿法

牛顿法至少有两个应用方向,1、求方程的根,2、最优化

1:求方程的根
原理是利用泰勒公式,在x0处展开,且展开到一阶,即f(x) = f(x0)+(x-x0)f’(x0)
求解方程f(x)=0,
即:
f(x0)+(x-x0)f’(x0)=0,
x = x1=x0-f(x0)/f’(x0),
因为这是利用泰勒公式的一阶展开,f(x) = f(x0)+(x-x0)f’(x0)处并不是完全相等,而是近似相等,这里求得的x并不能让f(x)=0,只能说f(x)的值比f(x0)更接近f(x)=0,于是乎,迭代求解的想法就很自然了,可以进而推出x(n+1)=x(n)-f(x(n))/f’(x(n)),通过迭代,这个式子必然在f(x
)=0的时候收敛。整个过程如下图:
在这里插入图片描述

2:牛顿法求极值
对函数f(x)进行二阶泰勒展开
在这里插入图片描述
这里把前三项看作关于 Δ x 的 二 次 函 数 g ( Δ x ) , 对 该 函 数 求 导 获 得 函 数 的 极 值 点 有 \Delta_x 的二次函数g(\Delta_x ),对该函数求导获得函数的极值点有 Δxg(Δx),
f ′ ′ ( x 0 ) Δ x + f ′ ( x 0 ) = 0 f''(x_0)\Delta_x+f'(x_0)=0 f(x0)Δx+f(x0)=0
f ′ ′ ( x 0 ) ( x − x 0 ) + f ′ ( x 0 ) = 0 f''(x_0)(x-x_0)+f'(x_0)=0 f(x0)(xx0)+f(x0)=0
x − x 0 = − f ′ ( x 0 ) f ′ ′ ( x 0 ) x-x_0=-\frac{f'(x_0)}{f''(x_0)} xx0=f(x0)f(x0)
x = x 0 − f ′ ( x 0 ) f ′ ′ ( x 0 ) x=x_0-\frac{f'(x_0)}{f''(x_0)} x=x0f(x0)f(x0)
x 0 x_0 x0是多变量时,定义一阶导数雅可比矩阵为 J f ( X n ) J_f(X_n) Jf(Xn)
在这里插入图片描述
二阶导数为Hessian矩阵
在这里插入图片描述
牛顿法 演变为:
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值