贝叶斯学习

1.基础

  • 条件概率: P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
  • 乘法定理: P ( A B ) = P ( A ∣ B ) P ( B ) = P ( B ∣ A ) P ( A ) P(AB ) = P(A|B)P(B) = P(B|A)P(A) P(AB)=P(AB)P(B)=P(BA)P(A)
  • 先验概率: P ( Y = c k ) P(Y=c_k) P(Y=ck)
  • 后验概率: P ( Y = c k ∣ X = x ) = P ( X = x ∣ Y = c k ) P ( Y = c k ) ∑ k P ( X = x ∣ Y = c k ) P ( Y = c k ) P(Y=c_k|X=x)=\frac{P(X=x|Y=c_k)P(Y=c_k)}{\sum _kP(X=x|Y=c_k)P(Y=c_k)} P(Y=ckX=x)=kP(X=xY=ck)P(Y=ck)P(X=xY=ck)P(Y=ck)

2.贝叶斯决策论

基于公式 P ( w i ∣ x ) = P ( x ∣ w i ) P ( w i ) P x P(w_i|x) = \frac{P(x|w_i)P(w_i)}{Px} P(wix)=PxP(xwi)P(wi)
决策:
if P ( x ∣ w 1 ) P ( x ∣ w 2 ) > P ( w 2 ) P ( w 1 ) \frac{P(x|w1)}{P(x|w2)} > \frac{P(w_2)}{P(w_1)} P(xw2)P(xw1)>P(w1)P(w2) then w 1 w_1 w1
else w 2 w_2 w2

最小错误率贝叶斯决策

p ( e ∣ x ) = 1 − p ( w r i g h t ∣ x ) p(e|x) = 1-p(w_{right}|x) p(ex)=1p(wrightx)
整体错误率

x ∈ w 1 : p ( x ∣ w 1 ) p ( w 1 ) x\in w_1: p(x|w_1)p(w_1) xw1:p(xw1)p(w1)累计到正确率, P ( x ∣ w 2 ) P ( w 2 ) P(x|w_2)P(w_2) P(xw2)P(w2)累计到错误率;相反类似。

引入风险决策,加入损失矩阵,目标函数:最小风险

题型:最小错误率&最小风险贝叶斯进行判别;

3.贝叶斯分类器

核心估计: P ( x ∣ c ) , P ( c ) P(x|c),P(c) P(xc),P(c)

不同类型的决策函数(由决策公式变种)

  • 朴素贝叶斯分类器(属性独立)
  • 半朴素贝叶斯分类器(属性依赖)
  • 正态分布的贝叶斯分类器( P ( x ∣ c ( θ ) ) P(x|c(\theta)) P(xc(θ))正态分布)

3.1 朴素贝叶斯分类器

决策过程

  1. 类别先验估计 P ( c ) P(c) P(c)
  2. 类别条件概率估计 P(x|c)
  3. 贝叶斯决策 h(x)

拉普拉斯平滑 避免训练样本不充分
P ( c ) P(c) P(c)分母加种类数N,在 P ( x i ∣ c ) P(x_i|c) P(xic)分母加属性类别数 N i N_i Ni,分子加1

3.2 正态密度的贝叶斯分类器

h ( x ) = a r g m a x c ∈ y P ( c ) P ( x ∣ c ) , P ( x ∣ c ) h(x) = argmax_{c \in y}P(c)P(x|c), P(x|c) h(x)=argmaxcyP(c)P(xc),P(xc)正态分布

4 贝叶斯学习与参数估计问题

三个基本问题:

  1. 最大后验估计
  2. 最大似然估计
  3. 贝叶斯学习

最大后验 & 最大似然 概念参考资料
参数估计方法

4.1 贝叶斯学习

  • Beta先验分布:二项分布的共轭是beta分布
  • Dirichlet先验分布:多项分布的共轭是Dirichlet分布

:在贝叶斯统计中,如果后验分布与先验分布属于同类,则先验分布与后验分布被称为共轭分布,而先验分布被称为似然函数的共轭先验。

4.2 极大似然估计

最大化观察数据的概率
已知模型,求最大参数

4.3 最大后验估计

求使后验最大的模型或参数

参考

  1. 《机器学习》PPT课件
  2. 《统计学习方法》李航 第4章 朴素贝叶斯法
  3. 《图解机器学习》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值