采用一个实际的案例来说明Neo4J的查询语言Cypher的使用方法,在实际的生产应用中,除了简单的查询操作会在Neo4J的web页面进行外,一般还是使用Python、Java等的driver来在程序中实现。后续会继续介绍编程语言如何操作Neo4J。
目录
(1)打开neo4j
windows键+R, 输入cmd,打开 命令操作符,输入 neo4j console;在一个运行neo4j服务器主机上访问 “http://localhost:7474/”
(2)删除数据库中以往的图,确保一个空白的环境进行操作:
MATCH (n) DETACH DELETE n
MATCH
是匹配操作,而小括号()代表一个节点node(可理解为括号类似一个圆形),括号里面的n为标识符。
(3)接着,我们创建一个人物节点:
CREATE (n:Person {name:'John'}) RETURN n
CREATE
是创建操作,Person
是标签,代表节点的类型。花括号{}代表节点的属性,属性类似Python的字典。这条语句的含义就是创建一个标签为Person的节点,该节点具有一个name属性,属性值是John。
(4)继续来创建更多的人物节点,并分别命名:
CREATE (n:Person {name:'Sally'}) RETURN n;
CREATE (n:Person {name:'Steve'}) RETURN n;
CREATE (n:Person {name:'Mike'}) RETURN n;
CREATE (n:Person {name:'Liz'}) RETURN n;
CREATE (n:Person {name:'Shawn'}) RETURN n
(5) 接下来创建地区节点
CREATE (n:Location {city:'Miami', state:'FL'});
CREATE (n:Location {city:'Boston', state:'MA'});
CREATE (n:Location {city:'Lynn', state:'MA'});
CREATE (n:Location {city:'Portland', state:'ME'});
CREATE (n:Location {city:'San Francisco', state:'CA'})
节点类型为Location,属性包括city和state。
综上,共创建6个人物节点、5个地区节点
(6)创建关系
MATCH (a:Person {name:'Liz'}),
(b:Person {name:'Mike'})
MERGE (a)-[:FRIENDS]->(b)
方括号
[]
即为关系,FRIENDS
为关系的类型。注意这里的箭头-->
是有方向的,表示是从a到b的关系。 如图,Liz和Mike之间建立了FRIENDS
关系,通过Neo4J的可视化很明显的可以看出:
(7)关系也可以增加属性
MATCH (a:Person {name:'Shawn'}),
(b:Person {name:'Sally'})
MERGE (a)-[:FRIENDS {since:2001}]->(b)
在关系中,同样的使用花括号{}来增加关系的属性,也是类似Python的字典,这里给FRIENDS关系增加了since属性,属性值为2001,表示他们建立朋友关系的时间。
(8) 增加更多的关系
MATCH (a:Person {name:'Shawn'}), (b:Person {name:'John'}) MERGE (a)-[:FRIENDS {since:2012}]->(b);
MATCH (a:Person {name:'Mike'}), (b:Person {name:'Shawn'}) MERGE (a)-[:FRIENDS {since:2006}]->(b);
MATCH (a:Person {name:'Sally'}), (b:Person {name:'Steve'}) MERGE (a)-[:FRIENDS {since:2006}]->(b);
MATCH (a:Person {name:'Liz'}), (b:Person {name:'John'}) MERGE (a)-[:MARRIED {since:1998}]->(b)
(9)然后,建立不同类型节点之间的关系-人物和地点的关系
MATCH (a:Person {name:'John'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1978}]->(b)
这里的关系是BORN_IN,表示出生地,同样有一个属性,表示出生年份。
如图,在人物节点和地区节点之间,人物出生地关系已建立好。
(10)建立更多人的出生地
MATCH (a:Person {name:'Liz'}), (b:Location {city:'Boston'}) MERGE (a)-[:BORN_IN {year:1981}]->(b);
MATCH (a:Person {name:'Mike'}), (b:Location {city:'San Francisco'}) MERGE (a)-[:BORN_IN {year:1960}]->(b);
MATCH (a:Person {name:'Shawn'}), (b:Location {city:'Miami'}) MERGE (a)-[:BORN_IN {year:1960}]->(b);
MATCH (a:Person {name:'Steve'}), (b:Location {city:'Lynn'}) MERGE (a)-[:BORN_IN {year:1970}]->(b)
(11)知识图谱的数据已经插入完毕,可以开始做查询了。
查询下所有在Boston出生的人物
MATCH (a:Person)-[:BORN_IN]->(b:Location {city:'Boston'}) RETURN a,b
(12)查询所有对外有关系的节点
MATCH (a)-->() RETURN a
(13)查询所有有关系的节点
MATCH (a)--() RETURN a
(14)查询所有对外有关系的节点,以及关系类型
MATCH (a)-[r]->() RETURN a.name, type(r)
(15)查询所有有结婚关系的节点
MATCH (n)-[:MARRIED]-() RETURN n
(16)查找某人的朋友的朋友
MATCH (a:Person {name:'Mike'})-[r1:FRIENDS]-()-[r2:FRIENDS]-(friend_of_a_friend) RETURN friend_of_a_friend.name AS fofName
例如此条,返回Mike的朋友的朋友:
(17)增加/修改节点的属性
MATCH (a:Person {name:'Liz'}) SET a.age=34;
MATCH (a:Person {name:'Shawn'}) SET a.age=32;
MATCH (a:Person {name:'John'}) SET a.age=44;
MATCH (a:Person {name:'Mike'}) SET a.age=25
SET表示
修改
操作
(18)删除节点的属性
MATCH (a:Person {name:'Mike'}) SET a.test='test';
MATCH (a:Person {name:'Mike'}) REMOVE a.test
删除属性操作主要通过
REMOVE
(19)删除节点
MATCH (a:Location {city:'Portland'}) DELETE a
删除节点操作是
DELETE
(20)删除有关系的节点
MATCH (a:Person {name:'Todd'})-[rel]-(b:Person) DELETE a,b,rel