【配准】2020年“基于深度学习的医学影像配准”期刊论文速览(PR,TMI,MIA)

针对基于深度学习的医学影像配准,检索了最新的(2020年)期刊论文,包含PR、TMI、MIA3个期刊,下面是浏览论文中的一些记录。

其中有两篇论文提供了代码。

一、PR

  1. Deep morphological simplification network (MS-Net) for guided registration of brain magnetic resonance images(沈定刚)

         解决的问题:Deformable brain MR image registration

         方法的创新:this is the first work to simplify brain MR image registration by deep learning, instead of estimating deformation field directly.两条支路(Trajectory,彩色箭头)各自逐渐简化固定图像和浮动图像,使得支路末尾的两张图相似又简单,容易配准;生成简单图像后再用Demons算法对相邻的图像进行配准生成形变场(橙色箭头),最后的形变场是所有形变场的迭代。用到的神经网络是最原始的Unet,创新点在于配准思想——利用简化的图像进行配准。

 

 

实验的设置:在多个数据集上对比了 Demons和Syn

     2.Training data independent image registration using generative adversarial networks and domain adaptation

        解决的问题:基于深度学习的配准方法对训练数据的依赖问题,比如在大脑图像上训练出的模型不能配准眼底图像

        方法的创新:用了GAN和域自适应做图像配准

        实验的设置:X光、大脑MR、眼底图像上都做了实验,比如用在X光上训练的模型配准眼底图像。(这里的眼底图像事先做了预配准)

二、TMI

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值