针对基于深度学习的医学影像配准,检索了最新的(2020年)期刊论文,包含PR、TMI、MIA3个期刊,下面是浏览论文中的一些记录。
其中有两篇论文提供了代码。
一、PR
- Deep morphological simplification network (MS-Net) for guided registration of brain magnetic resonance images(沈定刚)
解决的问题:Deformable brain MR image registration
方法的创新:this is the first work to simplify brain MR image registration by deep learning, instead of estimating deformation field directly.两条支路(Trajectory,彩色箭头)各自逐渐简化固定图像和浮动图像,使得支路末尾的两张图相似又简单,容易配准;生成简单图像后再用Demons算法对相邻的图像进行配准生成形变场(橙色箭头),最后的形变场是所有形变场的迭代。用到的神经网络是最原始的Unet,创新点在于配准思想——利用简化的图像进行配准。
实验的设置:在多个数据集上对比了 Demons和Syn
2.Training data independent image registration using generative adversarial networks and domain adaptation
解决的问题:基于深度学习的配准方法对训练数据的依赖问题,比如在大脑图像上训练出的模型不能配准眼底图像
方法的创新:用了GAN和域自适应做图像配准
实验的设置:X光、大脑MR、眼底图像上都做了实验,比如用在X光上训练的模型配准眼底图像。(这里的眼底图像事先做了预配准)