粒子场全息成像
文章平均质量分 90
羽峰码字
大家好,我是羽峰,公众号“羽峰码字”,会一直分享自己科研与编程经历。期待与您相遇。
展开
-
基于Dense-U-net的3D粒子场全息重建
这篇文章是我自己写的一篇文章,如有需要,欢迎引用[1]。代码可从github上获取:https://github.com/THUHoloLab/Dense-U-net 。相关工作介绍可以观看展示PPT:http://www.holoddd.com/col.jsp?id=141(Dense encoder-decoder network for 3D holographic particle imaging)。本人也以开通微信公共号“羽峰码字”,欢迎各位关注。文章也会在公共号上进行分享,可以在零原创 2021-04-12 18:15:29 · 1380 阅读 · 0 评论 -
基于深度学习的全息粒子场成像进展
基于深度学习的全息粒子场成像进展深度学习算法随着计算机性能的提升以及各种算法的提出,在成像以及一些视觉任务中得到了广泛应用。将深度学习与数字全息结合则是一个比较新颖的方向。该方向上现有文章和现有研究方向都只是一小部分,所以留给我们研究的内容还是很多的。我主要做的是基于深度学习的粒子场数字全息成像。这篇文章中,我主要介绍深度学习与粒子场数字全息成像相结合的几篇文章,这也在我的一篇文章中做了具体介绍,具体可以参考我的文章[1]。希望能给一些人一些启发,同时如果想讨论或者一起交流的,欢迎加我微信(Eugene原创 2021-04-07 21:08:01 · 774 阅读 · 0 评论