机器学习
文章平均质量分 77
接下来整个系列将介绍机器学习中的一些基础知识,希望对新入坑的小伙伴有所帮助
羽峰码字
大家好,我是羽峰,公众号“羽峰码字”,会一直分享自己科研与编程经历。期待与您相遇。
展开
-
机器学习初学者必备的学习路线图
上图包含了机器学习中大部分的基础知识,有了这份思维导图会有事办功倍的效果哈,想要PDF,或者原文件的,欢迎关注公众号:羽峰码字,发送关键词“机器学习思维导图”,即可获取哦。下方是公众号,欢迎扫码关注。这一部分后续我会写每一部分的具体知识点,也会做视频发在b站上,目前b站已经更新了KNN算法,欢迎有需要的朋友观看哈:KNN算法。学技术是看视频还是书,感觉还是看个人。视频可能讲的更清楚,看视频可以先有个大致了解,在看书细消化,就很不错。个人比较喜欢看视频学技术,所以我会把一些技术做成视频放在..原创 2021-06-27 01:05:49 · 1070 阅读 · 5 评论 -
算法岗,2021还会灰飞烟灭嘛?有这一份PDF就所向披靡了
github 算法工程师面试github 技术面试必备基础知识githu 2019 届秋招面经集合github AI 算法岗求职攻略github 阿里、腾讯、百度、华为、京东、搜狗和滴滴最新面试题汇集github 2020 年的算法实习岗位信息表,部分包括内推码,和常见深度学习算法岗面试题及答案,暑期 计算机视觉实习面经和总结github 「面试算法练级...原创 2021-06-23 12:30:42 · 795 阅读 · 12 评论 -
【深度学习面试八股文】-- 1-5
1.样本不平衡的处理方法①欠采样 - 随机删除观测数量足够多的类,使得两个类别间的相对比例是显著的。虽然这种方法使用起来非常简单,但很有可能被我们删除了的数据包含着预测类的重要信息。②过采样 - 对于不平衡的类别,我们使用拷贝现有样本的方法随机增加观测数量。理想情况下这种方法给了我们足够的样本数,但过采样可能导致过拟合训练数据。③合成采样( SMOTE )-该技术要求我们用合成方法得到不平衡类别的观测,该技术与现有的使用最近邻分类方法很类似。问题在于当一个类别的观测数量极度稀少时该怎...原创 2021-06-20 22:05:42 · 9326 阅读 · 50 评论 -
探寻从小白成长为深度学习大佬的过程,一些超级干货分享
大家好,我是羽峰,今天要和大家分享的是自己总结的深度学习四步曲,自我总结,难免有错,欢迎指正。还是老话,我是羽峰,希望我所分享的文章能为您及更多的朋友带来帮助。欢迎转发或转载呀!欢迎关注“羽峰码字”深度学习作为现在最热门的领域之一,不管是找工作还是科研,只要能和深度学习扯上点关系的,都慢慢因为深度学习火热起来而相应的火了起来。所以入门深度学习的朋友也越来越多。当然想要学也是可以的,学习深度学习贵在坚持,因为其中涉及到的知识还是挺多...原创 2021-06-15 09:52:07 · 2194 阅读 · 78 评论 -
【手把手教你】搭建神经网络(回归)
大家好,我是羽峰,今天要和大家分享是回归 (regression)问题,希望通过今天的讲解,各位对回归问题能有个更好的认识。1.认识回归回归问题是机器学习三大基本模型中很重要的一环,其功能是建模和分析变量之间的关系。回归问题多用来预测预测出如价格或概率这样连续值的输出,如预测房价、未来的天气情况等等。例如我们根据一个地区的若干年的PM2.5数值变化来估计某一天该地区的PM2.5值大小,预测值与当天实际数值大小越接近,回归分析算法的可信度越高。相对于分类(classification)问题...原创 2021-05-11 23:44:55 · 9701 阅读 · 8 评论 -
【手把手教你】搭建神经网络(图像分割)
大家好,我是羽峰,今天要给大家分享的是一个图像分割网络,文章会把整个代码进行分割讲解,完整看完,相信你一定会有所收获。目录1. 认识图像分割2.基于深度学习的分割1.Oxford-IIIT Pet 数据集介绍2. 下载 Oxford-IIIT Pets 数据集3. 定义模型4. 训练模型5. 做出预测1. 认识图像分割图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域...原创 2021-05-10 22:04:24 · 5469 阅读 · 18 评论