深度学习
文章平均质量分 87
羽峰码字
大家好,我是羽峰,公众号“羽峰码字”,会一直分享自己科研与编程经历。期待与您相遇。
展开
-
算法岗,2021还会灰飞烟灭嘛?有这一份PDF就所向披靡了
github 算法工程师面试github 技术面试必备基础知识githu 2019 届秋招面经集合github AI 算法岗求职攻略github 阿里、腾讯、百度、华为、京东、搜狗和滴滴最新面试题汇集github 2020 年的算法实习岗位信息表,部分包括内推码,和常见深度学习算法岗面试题及答案,暑期 计算机视觉实习面经和总结github 「面试算法练级...原创 2021-06-23 12:30:42 · 795 阅读 · 12 评论 -
【深度学习面试八股文】-- 1-5
1.样本不平衡的处理方法①欠采样 - 随机删除观测数量足够多的类,使得两个类别间的相对比例是显著的。虽然这种方法使用起来非常简单,但很有可能被我们删除了的数据包含着预测类的重要信息。②过采样 - 对于不平衡的类别,我们使用拷贝现有样本的方法随机增加观测数量。理想情况下这种方法给了我们足够的样本数,但过采样可能导致过拟合训练数据。③合成采样( SMOTE )-该技术要求我们用合成方法得到不平衡类别的观测,该技术与现有的使用最近邻分类方法很类似。问题在于当一个类别的观测数量极度稀少时该怎...原创 2021-06-20 22:05:42 · 9326 阅读 · 50 评论 -
探寻从小白成长为深度学习大佬的过程,一些超级干货分享
大家好,我是羽峰,今天要和大家分享的是自己总结的深度学习四步曲,自我总结,难免有错,欢迎指正。还是老话,我是羽峰,希望我所分享的文章能为您及更多的朋友带来帮助。欢迎转发或转载呀!欢迎关注“羽峰码字”深度学习作为现在最热门的领域之一,不管是找工作还是科研,只要能和深度学习扯上点关系的,都慢慢因为深度学习火热起来而相应的火了起来。所以入门深度学习的朋友也越来越多。当然想要学也是可以的,学习深度学习贵在坚持,因为其中涉及到的知识还是挺多...原创 2021-06-15 09:52:07 · 2194 阅读 · 78 评论 -
万字长文教会小师妹何为YOLO,并实战演练(附源码)
大家好,我是羽峰,今天要和大家分享的是YOLOv1算法. 本文有文字和视频,感兴趣的话可以之间跳到文章末尾看视频,可能视频讲的更细。YOLOv1算法是YOLO系列算法的基础,理解YOLOv1可以更好的理解YOLO系列算法。希望通过本文的讲解,能帮助你更好的理解YOLO系列算法。首先我们要理解的是yolo的网络结构,如图1所示,其实网络结构比较简单,就是简单的CNN网络,池化操作,以及全连接网络。我们主要理解输入与输出之间的映射关系,中间网络只是求取这种映射关系的一种工具。网络的输入是448*448原创 2021-06-06 15:18:28 · 8085 阅读 · 62 评论 -
做深度学习相关的科研工作,这一篇就够了?
吴恩达:深度学习工程师由 deeplearning.ai 出品,网易引进的正版授权中文版深度学习工程师微专业课程,让你在了解丰富的人工智能应用案例的同时,学会在实践中搭建出最先进的神经网络模型,训练出属于你自己的 AI。链接 | https://mooc.study.163.com/smartSpec/detail/1001319001.htm李飞飞:CS231n链接 | https://www.bilibili.com/video/BV1nJ411z7fe?p=1林轩田:机..原创 2021-06-05 12:31:03 · 1285 阅读 · 33 评论 -
华为鸿蒙深度研究(100页)
今天小编分享一份来自兴业证券的《华为鸿蒙深度研究》。干货满满,一起来看看吧!更多好文:...原创 2021-06-05 12:03:31 · 338 阅读 · 4 评论 -
我的三年自学深度学习之路
大家好,我是羽峰。今天要和大家分享的是研究生三年的生活,也是自己自学深度学习的三年,凭借三年自学,最终进入了大厂做了一名算法工程师。2018考研因为失误或者可能本来就比较菜,最后调剂回了本校。回本校的好处就是身边人或多或少都认识,所以建立起友谊就很容易,相处也很融洽。3月末确定之后,我就出去实习了一个月,那时候使用的还是还是c,考研考的c,所以对其还是比较了解,实习了一个月,也是这一个月的实习,接触到了深度学习这个热门领域,18年那时,深度学习已经很火了,动不动会调个参数,能跑个模型,就年入原创 2021-05-31 15:23:32 · 11360 阅读 · 78 评论 -
【手把手教你】搭建神经网络(3D点云分类)
大家好,我是羽峰,今天要和大家分享的是一个基于PointNet的3D点云分类研究。文章会把整个代码进行分割讲解,完整看完,相信你一定会有所收获。该示例实现了开创性的点云深度学习论文PointNet (Qi et al., 2017)。 有关PointNet的详细介绍,请参阅this blog post。欢迎关注“羽峰码字”目录1. 3D点云分类简介1.1 何为点云[1]1.2 点云的获取[1]1.3 点云的属性[1]2. 使用PointNet进行点云分类[2]2.1...原创 2021-05-23 10:28:34 · 4441 阅读 · 23 评论 -
【手把手教你】搭建神经网络(CT扫描3D图像的分类)
大家好,我是羽峰,今天要和大家分享的是一个基于tensorflow的CT扫描3D图像的分类。文章会把整个代码进行分割讲解,完整看完,相信你一定会有所收获。欢迎关注“羽峰码字”1. 项目简介此示例将显示构建3D卷积神经网络(CNN)以预测计算机断层扫描(CT)扫描中病毒性肺炎的存在所需的步骤。 2D CNN通常用于处理RGB图像(3通道)。 3D CNN只是3D等效项:它以3D体积或2D帧序列(例如CT扫描中的切片)为输入,因此3D CNN是学习体积数据表示的强大模型。2. API准备..原创 2021-05-17 08:45:02 · 4250 阅读 · 5 评论 -
【手把手教你】深度学习(目标检测—RCNN)
大家好,我是羽峰,今天要和大家分享的目标检测算法中RCNN算法,希望通过本文的讲解,各位朋友可以对RCNN有个更好的理解。还是老话,我是羽峰,希望我所分享的文章能为您及更多的朋友带来帮助。欢迎转发或转载呀!欢迎关注“羽峰码字”目录1. 目标检测基础1.1 物体识别1.2物体定位1.3交并比1.4非极大值抑制1.5目标检测分类2. RCNN[2]2.1Seletive search选择候选框2.2 候选框特征提取2....原创 2021-05-13 22:01:07 · 1465 阅读 · 5 评论 -
【手把手教你】深度学习—初识神经网络
大家好,我是羽峰,接下来一段时间会为大家分享一些深度学习的基本知识,及各种应用,包括回归,图像分类,图像分割,语义分割,DCGAN,pix2pix,SRGAN等。都是讲的比较基础所以起名为【手把手教你】系列,希望这一个系列能帮助你初步认识深度学习及其应用,并找到自己比较感兴趣的方向一直走下去。今天给大家分享的是【手把手教你】第一篇初识神经网络。还是老话,我是羽峰,希望我所分享的文章能为您及更多的朋友带来帮助。欢迎转发或转载呀!欢迎关注“羽峰码字”目录人脑神经网络...原创 2021-05-13 12:23:27 · 413 阅读 · 5 评论 -
【手把手教你】搭建神经网络(语义分割)
大家好,我是羽峰,今天要和大家分享的是一个基于tensorflow的语义分割项目,网络与U-Net很像。文章会把整个代码进行分割讲解,完整看完,相信你一定会有所收获。1. 认识语义分割语义分割结合了图像分类、目标检测和图像分割,通过一定的方法将图像分割成具有一定语义含义的区域块,并识别出每个区域块的语义类别,实现从底层到高层的语义推理过程,最终得到一幅具有逐像素语义标注的分割图像。图像语义分割方法有传统方法和基于卷积神经网络的方法,其中传统的语义分割方法又可以分为基于统计的方法和基于几何的方..原创 2021-05-13 09:27:24 · 3199 阅读 · 5 评论 -
【手把手教你】搭建神经网络(回归)
大家好,我是羽峰,今天要和大家分享是回归 (regression)问题,希望通过今天的讲解,各位对回归问题能有个更好的认识。1.认识回归回归问题是机器学习三大基本模型中很重要的一环,其功能是建模和分析变量之间的关系。回归问题多用来预测预测出如价格或概率这样连续值的输出,如预测房价、未来的天气情况等等。例如我们根据一个地区的若干年的PM2.5数值变化来估计某一天该地区的PM2.5值大小,预测值与当天实际数值大小越接近,回归分析算法的可信度越高。相对于分类(classification)问题...原创 2021-05-11 23:44:55 · 9701 阅读 · 8 评论 -
【手把手教你】搭建神经网络(图像分割)
大家好,我是羽峰,今天要给大家分享的是一个图像分割网络,文章会把整个代码进行分割讲解,完整看完,相信你一定会有所收获。目录1. 认识图像分割2.基于深度学习的分割1.Oxford-IIIT Pet 数据集介绍2. 下载 Oxford-IIIT Pets 数据集3. 定义模型4. 训练模型5. 做出预测1. 认识图像分割图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域...原创 2021-05-10 22:04:24 · 5469 阅读 · 18 评论 -
校招算法面试中一些常见问题
大家好,我是羽峰,今天整理了一下校招面试中常见算法题,看看目录中这些问题你是否了解呢,能完整的答出来吗?1.权值初始化方法 常量初始化(constant) 高斯分布初始化(gaussian) positive_unitball初始化 均匀分布初始化(uniform) xavier初始化 msra初始化 双线性初始化(bilinear) 2.BatchNormalization、LayerNormalization、...原创 2021-05-08 22:53:48 · 955 阅读 · 14 评论 -
【手把手教你】搭建一个神经网络(图像分类)
大家好,我是羽峰,今天要和大家分享的是一个基于tensorflow的一个图像分类上手项目:对服装图像进行分类,通过这个项目,大家可以对图像分类有一个基本的理解,为后续学习提供一些帮助。1 API配置这里主要导入一些模块及库,作为底层运算基础。# TensorFlow and tf.kerasimport tensorflow as tffrom tensorflow import keras# Helper librariesimport numpy as npimpor...原创 2021-05-07 09:53:40 · 4435 阅读 · 7 评论 -
YOLO算法之YOLOv3精讲
目录YOLOv3的改进1. YOLOv3的第一个改进是网络的结构的改变2. YOLOv3的第二个改进是多尺度训练YOLOv3代码实战1.数据集标注2. 数据预处理YOLO系列总结大家好,我是羽峰,今天要和大家分享的是YOLOv3算法。YOLOv3算法是在YOLOv2算法的基础上继续进行改进的,本文章不仅包括YOLOv3的改进原理,而且还包括YOLOv3的代码实例讲解,希望通过本视频讲解,各位朋友能够更好的应用YOLOv3去训练自己的项目。如果想要YOLOv3...原创 2021-05-02 22:14:53 · 12086 阅读 · 26 评论 -
YOLO算法之YOLOv2精讲
目录YOLOv2的第一个改进就是网络的改进YOLOv2的第二个改进在网络中加入了Batch NormalizationYOLOv2的第三个改进是增加了HighResolution ClassifierYOLOv2的第四个改进是Multi-ScaleTrainingYOLOv2的第五个改进是加入了Anchor机制大家好,我是羽峰,今天要和大家分享的是YOLOv2算法。YOLOv2算法是在YOLOv1算法的基础上进行改进的,YOLOv1算法主要存在两个缺点:一是YOLOv1定位不准确,另原创 2021-04-28 22:11:00 · 1880 阅读 · 1 评论 -
一文带你开始学习深度学习
目录神经网络与数学PC端的深度模型搭建神经网络中的一些网络参数深度学习有效途径大家好,我是羽峰,今天要和大家分享的是:从1+1=2开始学习深度学习. 小白对深度学习可能是很蒙的,希望通过我的讲解,能给你们带来不一样的思路来学习深度学习若有不对的地方,欢迎大佬批评指正。博主主页也放了视频讲解,喜欢看视频的,可以直接去观看。B站上up主名:“羽峰码字”也放了相应的视频,也可以去B站上看相关视频,希望多多关注。神经网络与数学1+1=2这个公式我们大家都比较了解,那么我们将其换一种思原创 2021-04-25 21:08:44 · 417 阅读 · 1 评论 -
基于深度学习的相位恢复及处理相关工作
大佬王凯强是西北工业大学赵建林老师的博士生,他在光学与光学工程博生联赛第七场上介绍了基于深度学习的相位恢复及处理相关工作。相关视频在公众号“中国光学”,实况直播,光学与光学工程博士生学术联赛-积分赛(第五比赛日)实况直播 | 光学与光学工程博士生学术联赛 - 积分赛(第五比赛日)末尾的线上积分赛第7场中,视频在第2小时33分钟处开始。(文中图均来自视频中,如有需要,欢迎搜索相关文章进行引用)目录1.第一个工作:Deep learning phase imaging[1]2.第二个工...原创 2021-04-13 11:02:40 · 4019 阅读 · 2 评论 -
基于Dense-U-net的3D粒子场全息重建
这篇文章是我自己写的一篇文章,如有需要,欢迎引用[1]。代码可从github上获取:https://github.com/THUHoloLab/Dense-U-net 。相关工作介绍可以观看展示PPT:http://www.holoddd.com/col.jsp?id=141(Dense encoder-decoder network for 3D holographic particle imaging)。本人也以开通微信公共号“羽峰码字”,欢迎各位关注。文章也会在公共号上进行分享,可以在零原创 2021-04-12 18:15:29 · 1380 阅读 · 0 评论 -
基于深度学习的全息粒子场成像进展
基于深度学习的全息粒子场成像进展深度学习算法随着计算机性能的提升以及各种算法的提出,在成像以及一些视觉任务中得到了广泛应用。将深度学习与数字全息结合则是一个比较新颖的方向。该方向上现有文章和现有研究方向都只是一小部分,所以留给我们研究的内容还是很多的。我主要做的是基于深度学习的粒子场数字全息成像。这篇文章中,我主要介绍深度学习与粒子场数字全息成像相结合的几篇文章,这也在我的一篇文章中做了具体介绍,具体可以参考我的文章[1]。希望能给一些人一些启发,同时如果想讨论或者一起交流的,欢迎加我微信(Eugene原创 2021-04-07 21:08:01 · 774 阅读 · 0 评论