写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文;
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。
目录
解说
大阳线又叫长阳线、长红线,其K线实体长度为上一交易日价格4%以上。如果用于大盘指数,实体长度应相应缩小,一般实体长度为上一交易日的2%以上即可。大阳线可以有上下影线。
日K线收出阳线,说明一个交易日内多方取得了最终的胜利。 周K线收出阳线,说明一个交易周内多方取得了最终的胜利。其他时间周期的阳线以此类推。阳线的实体越长,说明多方的力量越强,反之则越弱。沪深股市的股票,如果以跌停开盘,涨停收盘,最大日阳线实体可达20%。
一般情况下,股票收出大阳线,表明后市看涨。这是因为多方从一开盘就发动攻势,步步紧逼。空方虽然也会尽力反击,展开一些拉锯战,但终究难以低档多方的进攻。多方牢牢占据优势,推动股价或指数持续上涨直至收盘。收出大阳线,局面很显然是一边倒的态势。
从交易心理上看,大阳线充分表达了多方的信心,以及强烈的上涨势头。随着股价或指数的上升,交易者的热情越发高涨,更多的资金疯狂涌进,为了成交而频频高挂买单。那些已经持有股票的交易者,则沉浸在获利的狂欢当中,不愿抛售筹码,筹码供给减少,进一步加剧了供小于求的状况。
需要提醒的是:单根阳线不足以代表全局,交易者还要根据大阳线在K线图所处的位置,具体情况具体分析。
技术特征
1)可以出现在任何位置和形态当中。
2)实体很长,上下影线一般很短。
技术含义
1)在连续下跌时,出现一根大阳线,说明多方开始发起反攻,有可能否极泰来,股价就此见底回升。买入信号。
2)上涨初期出现大阳线,表示多方的战果继续扩大,涨势将会继续,股价有时会加速上扬。是买入信号。
3)股价加速上扬,或大幅上涨后,出现大阳线有可能见顶回落。
4)股价上涨一段后进行调整,然后以大阳线的方式突破技术整理形态,后市继续看涨。是买入信号。
K线形态策略代码
def excute_strategy(daily_file_path):
'''
名称:大阳线
识别:K线实体长度为上一交易日价格4%以上。
前置条件:计算时间区间 2021-01-01 到 2022-01-01
:param daily_file_path: 股票日数据文件路径
:return:
'''
import pandas as pd
import os
start_date_str = '2021-01-01'
end_date_str = '2022-01-01'
df = pd.read_csv(daily_file_path,encoding='utf-8')
# 删除停牌的数据
df = df.loc[df['openPrice'] > 0].copy()
df['o_date'] = df['tradeDate']
df['o_date'] = pd.to_datetime(df['o_date'])
df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
# 保存未复权收盘价数据
df['close'] = df['closePrice']
# 计算前复权数据
df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']
# 开始计算
df['body_length'] = df['closePrice'] - df['openPrice']
df['signal'] = 0
df['signal_name'] = 0
df.loc[(df['body_length']>0) & (df['body_length']/df['closePrice'].shift(1)>=0.04),'signal'] = 1
df.loc[(df['body_length']>0) & (df['body_length']/df['closePrice'].shift(1)>=0.04),'signal_name'] = (df['body_length']/df['closePrice'].shift(1))*100
df = df.round({'signal_name':2})
file_name = os.path.basename(daily_file_path)
title_str = file_name.split('.')[0]
line_data = {
'title_str':title_str,
'whole_header':['日期','收','开','高','低'],
'whole_df':df,
'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
'start_date_str':start_date_str,
'end_date_str':end_date_str,
'signal_type':'line'
}
return line_data