K线形态识别_平底

本文介绍了K线形态中的平底形态,这是一种在下跌趋势中出现的见底信号。平底形态由两根或更多最低价相同的K线组成,表明空方力量减弱,可能是买入信号。然而,此形态需要与其他看涨信号结合才能作为交易依据。提供的Python代码示例展示了如何检测这种形态,但未涵盖趋势判断部分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。

 

目录

解说

技术特征

技术含义

K线形态策略代码

结果


解说

        平底又称钳子底,是在下跌趋势中最低价都相同的两根或两根以上的K线组合。

技术特征

1)出现在下跌趋势中。

2)由两根或两根以上的K线组合。

3)最低价在同一水平位置上。

技术含义

        平底是见底信号。

        无论是长期下降趋势、中期下降趋势还是短期下降趋势,只要是下降趋势,就意味着空方占据主动,多方只有落荒而逃的份儿。但突然从某一天开始,股价或指数碰到某一个点位就不再下跌,这种情况持续两天或者再多的时间。很显然,空方已没有看起来那么强大了,而空方也不似表面上那么羸弱,很多场内外的多方渐渐对行情有了信心。因此平底是见底信号,接触最低价的K线越多,见底信号就越可靠。

        但如果没有其他看涨K线形态和趋势分析信号的佐证,平底不能单独作为买入信号使用。

K线形态策略代码

def excute_strategy(daily_file_path):
    '''
    名称:平底
    识别:在下跌趋势中最低价都相同的两根或两根以上的K线组合
    自定义:
    1. 目前不知道怎么用代码判断是下跌趋势,还是上涨趋势,这点先搁置
    2. 最低价都相同=》之间的参差不超过0.1%
    前置条件:计算时间区间 2021-01-01 到 2022-01-01
    :param daily_file_path: 股票日数据文件路径
    :return:
    '''
    import pandas as pd
    import os

    start_date_str = '2019-01-01'
    end_date_str = '2020-01-01'
    df = pd.read_csv(daily_file_path,encoding='utf-8')
    # 删除停牌的数据
    df = df.loc[df['openPrice'] > 0].copy()
    df['o_date'] = df['tradeDate']
    df['o_date'] = pd.to_datetime(df['o_date'])
    df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
    # 保存未复权收盘价数据
    df['close'] = df['closePrice']
    # 计算前复权数据
    df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']

    # 开始计算
    df['lowest_pct'] = abs(df['lowestPrice'] - df['lowestPrice'].shift(1))/df['lowestPrice'].shift(1)
    df['ext_0'] = 0
    df.loc[df['lowest_pct'] < 0.001, 'ext_0'] = 1

    df['signal'] = 0
    df['signal_name'] = ''
    df.loc[(df['ext_0']==1) & (df['ext_0'].shift(-1)==1),'signal'] = 1
    df.loc[(df['ext_0']==1) & (df['ext_0'].shift(1)==1),'signal'] = 1

    file_name = os.path.basename(daily_file_path)
    title_str = file_name.split('.')[0]

    line_data = {
        'title_str':title_str,
        'whole_header':['日期','收','开','高','低'],
        'whole_df':df,
        'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
        'start_date_str':start_date_str,
        'end_date_str':end_date_str,
        'signal_type':'duration_detail',
        'duration_len':[]
    }
    return line_data

结果

<think>嗯,用户的问题是关于如何识别玻璃仪器的方法。首先需要明确用户的意图,可能是实验室工作者、学生或者相关人员需要正确识别各种玻璃仪器,以确保实验的准确性和安全性。接下来要考虑玻璃仪器的识别方法可能包括哪些方面。常见的识别点可能有形状特征、刻度标识、材质特性、接口设计以及特殊功能等。 然后,我需要调用网络搜索工具查找相关资料。可能涉及到的信息包括不同玻璃仪器的结构特点,比如烧杯、量筒、锥形瓶等的区别;材质方面,比如硼硅酸盐玻璃与普通玻璃的区别;刻度线的精度和标识方法;还有磨砂接口、温度耐受性等特性。另外,可能还需要考虑颜色编码、标准规格等信息。 接下来要整合这些信息,按照用户的要求分步骤组织,避免使用第一人称和步骤词汇。需要确保每个方法或步骤之有换行,并且将引用内容分散在回答中,而不是集中在末尾。同时,如果有代码或公式,要严格遵循格式规范,但在这个问题中可能不太需要,不过如果有测量体积的计算公式,可能需要用LaTeX表示。 还要注意用户提到的相关问题部分,必须基于原始问题和回答内容生成至少三个相关问题,比如不同玻璃仪器的清洗方法、刻度校准方法或者材质选择标准。最后要检查格式,确保没有使用Markdown,用自然的中文口语化表达思考过程,分段落,适当换行。</think>玻璃仪器识别需结合形态、标识、材质等多维度判断。以下是实验室常用鉴别方法: **形态特征鉴别** 观察容器主体结构与开口形状:烧杯呈直筒圆柱形带翻边口,锥形瓶为圆锥形缩口设计,量筒具有细长管状结构。平底烧瓶底部平坦,圆底烧瓶底部呈球形 **刻度标识分析** 精确测量仪器具有标准刻度线:量筒刻度线水平环绕筒体,容量瓶标有单环校准线并注明"TC"(包含流出量)。移液管通常标注"TD"(不包含尖端残留量),温度计内置汞柱或酒精柱 **材质特性判断** 通过透光率和耐温性区分:高硼硅玻璃(如烧杯)透光率92%以上,热膨胀系数≤3.3×10⁻⁶/K,可承受300℃温差。普通钠钙玻璃遇骤冷骤热易破裂 **接口标准识别** 标准磨砂接口符合ISO编号规范:24/40表示直径24mm、长度40mm。接口角度19°±1°为国际通用标准,接口处可见均匀磨砂处理 **功能标识验证** 特殊用途仪器具有专属标记:棕色试剂瓶标注"UV-cut",干燥器带有磨口真空活塞,砂芯漏斗标注孔径参数如G3(16-40μm) ```python # 玻璃材质折射率计算示例 n = (math.sin((alpha + delta_m)/2)) / math.sin(alpha/2) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值