K线形态识别_塔形顶

写在前面:
1. 本文中提到的“K线形态查看工具”的具体使用操作请查看该博文
2. K线形体所处背景,诸如处在上升趋势、下降趋势、盘整等,背景内容在K线形态策略代码中没有体现;
3. 文中知识内容来自书籍《K线技术分析》by邱立波。

目录

解说

技术特征

技术含义

K线形态策略代码

结果


解说

        塔形顶是在上涨过程中收出一根大阳线或中阳线,接着再阳线顶部收出几根小阴线和小阳线,最后收出一根大阴线或中阴线。塔形顶因其形状像一个塔顶而得名。

技术特征

1)出现在上涨趋势中。

2)先是一根大阳线或中阳线,接着在阳线上方收出一连串小阴线、小阳线,最后出现一根大阴线或中阴线。

技术含义

        塔形顶是见顶反转信号,后市看跌,卖出。

        塔形顶是和塔形底相对的K线形态,表明多方已是强弩之末,无力继续推高股价。大阳线或中阳线之后出现的小阴线和小阳线横盘整理,逐步将多方仅剩的一点能量耗尽,最后一根大阴线或中阴线是空方拉开了大反攻的序幕,也确认了趋势由上涨转为下跌。交易者可在塔形顶收出大阴线或中阴线的当日或次日减仓或清仓。

K线形态策略代码

def excute_strategy(daily_file_path):
    '''
    名称:塔形顶
    识别:上涨过程中收出一根大阳线或中阳线,接着在阳线顶部收出几根小阳线或小阴线,最后收出一根大阴线或中阴线
    自定义:
    1. 阳线顶部=》最低价在阳线实体底部三分之一以上
    2. 最后一根阴线的收盘价不得低于第一根实体顶部的五分之一
    3. 最后一根阴线的开盘价不得高于第一根实体底部的三分之一
    4. 几根=》至少5根
    前置条件:计算时间区间 2021-01-01 到 2022-01-01
    :param daily_file_path: 股票日数据文件路径
    :return:
    '''
    import pandas as pd
    import os

    start_date_str = '2014-01-01'
    end_date_str = '2015-01-01'
    df = pd.read_csv(daily_file_path,encoding='utf-8')
    # 删除停牌的数据
    df = df.loc[df['openPrice'] > 0].copy()
    df['o_date'] = df['tradeDate']
    df['o_date'] = pd.to_datetime(df['o_date'])
    df = df.loc[(df['o_date'] >= start_date_str) & (df['o_date']<=end_date_str)].copy()
    # 保存未复权收盘价数据
    df['close'] = df['closePrice']
    # 计算前复权数据
    df['openPrice'] = df['openPrice'] * df['accumAdjFactor']
    df['closePrice'] = df['closePrice'] * df['accumAdjFactor']
    df['highestPrice'] = df['highestPrice'] * df['accumAdjFactor']
    df['lowestPrice'] = df['lowestPrice'] * df['accumAdjFactor']

    # 开始计算
    df['type'] = 0
    df.loc[df['closePrice'] >= df['openPrice'], 'type'] = 1
    df.loc[df['closePrice'] < df['openPrice'], 'type'] = -1

    df['body_length'] = abs(df['closePrice']-df['openPrice'])

    df['m_body_type'] = 0
    df.loc[(df['type']==1) & (df['body_length']/df['closePrice'].shift(1)>0.02),'m_body_type'] = 2
    df.loc[(df['type']==-1) & (df['body_length']/df['closePrice'].shift(1)>0.02),'m_body_type'] = 4
    df['small_type'] = 0
    df.loc[df['body_length']/df['closePrice'].shift(1)<0.015,'small_type'] = 1
    df.reset_index(inplace=True)
    df['i_row'] = [i for i in range(0,len(df))]
    df_m_n = df.loc[df['m_body_type']==2].copy()
    df_m_p = df.loc[df['m_body_type']==4].copy()
    i_row_n = df_m_n['i_row'].values.tolist()
    i_row_p = df_m_p['i_row'].values.tolist()

    i_row_two = i_row_n + i_row_p
    i_row_two.sort()
    n_list = []
    p_list = []
    for i in range(0,len(i_row_two)-1):
        if i_row_two[i] in i_row_n and i_row_two[i+1] in i_row_p:
            n_list.append(i_row_two[i])
            p_list.append(i_row_two[i+1])
        pass

    df['signal'] = 0
    df['signal_name'] = ''
    for n,p in zip(n_list,p_list):
        if p-n < 5:
            continue
        enter_yeah = True
        for i in range(n+1,p):
            if df.iloc[i]['small_type']!=1:
                enter_yeah = False
                break
            pass
        if enter_yeah:
            final_yeah = False
            target_body_length = df.iloc[n]['body_length']
            if (df.iloc[n]['openPrice'] + target_body_length*0.1) > df.iloc[p]['closePrice']:
                continue
            if (df.iloc[n]['closePrice'] - target_body_length*0.1) < df.iloc[p]['openPrice']:
                continue
            for m_i in range(n+1,p):
                if (df.iloc[n]['closePrice'] - target_body_length*0.33) > df.iloc[m_i]['lowestPrice']:
                    final_yeah = True
                    break
            if final_yeah:
                continue
            df.loc[(df['i_row']>=n) & (df['i_row']<=p),'signal'] = 1
            df.loc[(df['i_row']>=n) & (df['i_row']<=p),'signal_name'] = str(p-n)
            pass

    file_name = os.path.basename(daily_file_path)
    title_str = file_name.split('.')[0]

    line_data = {
        'title_str':title_str,
        'whole_header':['日期','收','开','高','低'],
        'whole_df':df,
        'whole_pd_header':['tradeDate','closePrice','openPrice','highestPrice','lowestPrice'],
        'start_date_str':start_date_str,
        'end_date_str':end_date_str,
        'signal_type':'duration_detail',
        'duration_len':[],
        'temp':len(df.loc[df['signal']==1])
    }
    return line_data

结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值