python_寻找底部股票

本文介绍了如何利用Python从优矿平台下载股票数据,提取月数据,并计算股票当前价格与历史最高价的纵向(对折法)和横向(月份数)距离,以辅助判断潜在底部股票。文中提供了详细的数据处理步骤,包括数据下载、转换、分组和计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

写在前面:

下面开始进入正文,正文很长,先概述要点步骤,以防迷路。

先看最终结果(当前价格为2023-07-10收盘价)

 1 下载股票基本信息、股票日数据

step one

 step two

2 从股票日数据中提取股票月数据

 3 从股票基本信息中提起股票代码和股票简称键值对

4 开始计算当前价格与历史最高价的纵向距离和横向距离


写在前面:

1 这里的底部是指距离历史最高价位置较远的股票,不能确定是底部,但可以暂时预设为底部去思考

2 “当前价格与历史最高价位置距离”在技术上怎么体现?我看网上有多种方式判断,本文取两个方法。

方法一:将历史最高价对折,再对折,再对折,。。。直到最靠近当前价格,对折次数越多表示距离越远

方法二:当前价格相当于历史最高价格的几分之几,就是(当前价格/历史最高价格)*100%,值越小表示距离越远

3 上面【2】中提到的“当前价格与历史最高价位置距离”本文定义为纵向距离;两个价格点位之间相隔的月份数文本定义为横向距离

4 本文提供的方法只是缩小寻找范围,并不代表着找出来的结果都有在可能的底部横盘

下面开始进入正文,正文很长,先概述要点步骤,以防迷路。

1 下载股票基本信息、股票日数据

2 从股票日数据中提取股票月数据

3 从股票基本信息中提起股票代码和股票简称键值对

4 开始计算当前价格与历史最高价的纵向距离和横向距离

先看最终结果(当前价格为2023-07-10收盘价)

最终结果字段说明

字段名说明
上市至今月份数股票上市时间越长,存在长时间底部横盘的可能性也比较大
最近一次最高价这里强调“最近”是考虑可能出现多个时间点出现相同最高价的情况,这种情况取距离现在最近的这次最高价
最高价对应的月份计算横向距离的起点位置
几折股票定义看前文“写在前面”。算式:最高价除以当前价格的结果取2的对数
当前价格相对最高价格百分比这个就容易理解了。算式:当前价格除以最高价乘以百分百

取结果中的“神州高铁”在同花顺中看下

 股票月线级别确实在底部横盘了一段时间

 1 下载股票基本信息、股票日数据

1)本文数据来自“优矿”,之所以选择优矿的数据,是优矿给的股票日数据字段很全,包括换手率、滚动PE等,这些字段在做其他研究时可以直接取用。

2)这里建议下载优矿的未复权日数据,如果直接下载前复权,意味着以后每回都得从上市时间下载,如果是未复权数据,后续只要做增量下载就可以。未复权数据中有一个accumAdjFactor字段,这个字段是累积前复权因子,要计算前复权数据只要将未复权数据乘以accumAdjFactor就可以得到前复权数据。

3)优矿使用手机号注册,每天可以免费下载30M的数据。

4)本文使用到的股票数据字段,日期、开盘价、收盘价、最高价、最低价,为前复权数据,大家使用其他来源的数据只要确保有这5个字段就可以。

step one

打开优矿,注册后登录。

点击“研究数据”

点击右侧“展开详情”,然后“复制代码”

进入“开始研究” ,新建Notebook,并进入新建的Notebook

将刚刚复制的代码黏贴进去,做一点小修改,这就是基础的python了,这里不赘述,代码处理好后,点击右上角“运行”,运行完毕后,进入左侧竖条菜单中的“数据” ,就可以看到刚刚运行生成的文件

这个文件玖可以下载了。

 股票日数据用以下这个代码,其余过程与上面获取股票基本数据一致,不再赘述。

注:由于优矿每天只能下载30M,每次生成的股票个数要控制下,超过30M没法下载

 step two

下载后的股票日数据是多个股票集中在一个文件里,为方便后续处理,最好一个股票的日数据单独存储一个文件。

python处理:pandas读入文件生成DataFrame,对secID进行分组,每组单独存储为一个文件

    # 000.csv是从优矿中下载的股票日数据文件
    file_path = r'D:/000.csv'
    # 用于存储单个股票日数据的目录
    save_dir = r'E:/results/'
    df = pd.read_csv(file_path,encoding='utf-8')
    df['tradeDate'] = pd.to_datetime(df['tradeDate'])
    df_group = df.groupby(by='secID')
    for name,group in df_group:
        ticker = name.split('.')[0]
        group.to_csv(save_dir+ticker+'.csv',encoding='utf-8')
        pass

分解完后,就是股票的日数据都存储在单一文件里

2 从股票日数据中提取股票月数据

月数据开盘价  等于 该月第一个交易日的开盘价

月数据收盘价  等于 该月最后一个交易的收盘价

月数据最高价  等于 该月所有交易日中的最高价

月数据最低价  等于 该月所有交易日中的最低价

python处理:pandas逐一读入日数据,逐一对每个股票进行月度抽样,月度抽样后其实就是对日数据按照月份进行分组,取每组最后一行的收盘价即为月数据收盘价,取每组第一行开盘价即为月数据开盘价,取该组最高价字段的最大值即为月数据最高价,取该组最低价字段的最小值即为月数据最低价。

    daily_path = r'E:/daily/'
    month_path = r'E:/month/'
    file_list = os.listdir(daily_path)
    for file_one in file_list:
        ticker = file_one.split('.')[0]
        print(ticker)
        file_path = daily_path + file_one
        df = pd.read_csv(file_path,encoding='utf-8')
        df = df.loc[df['openPrice']>0].copy()
        df['o_date'] = pd.to_datetime(df['tradeDate'])
        df['d_close'] = df['closePrice']*df['accumAdjFactor']
        df['d_open'] = df['openPrice']*df['accumAdjFactor']
        df['d_high'] = df['highestPrice']*df['accumAdjFactor']
        df['d_low'] = df['lowestPrice']*df['accumAdjFactor']
        month_group = df.resample('M',on='o_date')

        month_df = month_group.last()
        month_df['endDate'] = month_df.index.get_level_values('o_date')
        month_df['open'] = month_group.first()['d_open']
        month_df['low'] = month_group.min()['d_low']
        month_df['high'] = month_group.max()['d_high']
        month_df.rename(columns={'endDate':'date','d_close':'close'},inplace=True)

        month_df = month_df.loc[:,['date','close','open','high','low']].copy()
        month_df.to_csv(month_path + ticker + '.csv',encoding='utf-8')
    pass

执行完后,得到月度级别数据

 3 从股票基本信息中提起股票代码和股票简称键值对

这一步主要是为了好识别,毕竟股票代码都是数字没有股票简称直接。

    file_path = r'E:/stock_list.csv'
    df = pd.read_csv(file_path,encoding='utf-8')
    df = df.loc[df['listStatusCD']=='L'].copy()
    ticker_list = df['secID'].values.tolist()
    name_list = df['secShortName'].values.tolist()
    ticker_name_json = {}
    for i,item in enumerate(ticker_list):
        ticker00 = item.split('.')[0]
        name = name_list[i]
        ticker_name_json[ticker00] = name
    with open(r'E:/ticker_name.json','w',encoding='utf-8') as fw:
        json.dump(ticker_name_json,fw)

4 开始计算当前价格与历史最高价的纵向距离和横向距离

逐一对每个股票的月数据进行计算,然后将结果存储到一个excel文件中

    with open(r'E:/ticker_name.json','r',encoding='utf-8') as fr:
        ticker_name_map = json.load(fr)
    pre_dir = r'E:/month/'
    file_list = os.listdir(pre_dir)
    results_list = []
    for file_item in file_list:
        ticker = file_item.split('.')[0]
        if ticker_name_map.get(ticker) is None:
            continue
        print(ticker)
        name = ticker_name_map[ticker]
        df = pd.read_csv(pre_dir + file_item,encoding='utf-8')
        df = df.loc[:,['date','close','open','high','low']].copy()
        df.reset_index(inplace=True)
        df['i_row'] = range(len(df))
        month_number = len(df)
        start_month = df.iloc[0]['date']
        end_month = df.iloc[-1]['date']
        current_price = df.iloc[-1]['close']
        max_price = df['high'].max()
        df00 = df.loc[df['high']==max_price].copy()
        max_date = df00.iloc[-1]['date']
        zhe_number = math.log(max_price/current_price,2)
        zhe_number = round(zhe_number,4)
        baifenbi_number = round(current_price/max_price,4)*100
        max_row = df00.iloc[-1]['i_row']

        results_list.append({
            'ticker':ticker,
            'name':name,
            'month_number':month_number,
            'start_month':start_month,
            'end_month':end_month,
            'max_price':max_price,
            'max_month':max_date,
            'current_price':current_price,
            'zhe_number':zhe_number,
            'baifenbi_number':baifenbi_number,
            'dur_month_number':month_number-max_row
        })
        pass
    df_result = pd.DataFrame(results_list)
    df_result.to_excel(r'E:/zhe_r.xlsx',engine='openpyxl',encoding='utf-8')
    pass

得到的结果就可以根据自己的需要筛选,本文这里做了一个粗浅的筛选,将ST股票剔除,取纵向距离上对折次数大于等于2次的股票列表

    df = pd.read_excel(r'E:/zhe_r.xlsx',engine='openpyxl',converters={'ticker':str})
    df = df.loc[(df['name'].str.contains('ST')==False) & (df['zhe_number']>=2)].copy()
    df.to_excel(r'E:/zhe_r00.xlsx',engine='openpyxl')

这个结果就是前文展示的结果。

本文只是做了粗浅的筛选,如果要更进一步缩小范围,可以在现有基础上再精进,后续得闲再往下继续。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值