基于典型相关分析(CCA)的多元变化检测算法(MAD)

本文介绍了基于典型相关分析(CCA)的多元变化检测算法MAD,用于遥感影像的变化检测。MAD算法通过最大化投影后的变量相关性来检测变化,并通过迭代加权的IRMAD提升检测效果。实验结果显示,IRMAD能提供更精确、噪声更少的改变区域划分,且与SFA算法相比表现出高精度。
摘要由CSDN通过智能技术生成

基于典型相关分析的多元变化检测算法


多元变化检测算法(Multivariate Alteration Detection,MAD)由A. A. Nielsen等人在论文Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies中首次提出,而后在论文The Regularized Iteratively Reweighted MAD Method for Change Detection in Multi- and Hyperspectral Data中,A. A. Nielsen提出了MAD的迭代版本IRMAD。
MAD基于典型相关分析CCA,是以投影特征差值方差最大化为准则提出的变化检测算法。

1 典型相关分析(CCA)

MAD算法的基础是典型相关分析(Canonical Correlation Analysis, CCA),因此下面先介绍CCA。CCA是简单相关、多重相关的推广,是研究两组变量之间相关性的一种统计分析方法,CCA也是一种降维技术。CCA是将高维的两组数据分别降维到1维,然后用相关系数分析相关性。降维的原则是降到1维后,两组数据的相关系数最大。
给定两组多元变量X和Y,默认X和Y维数相同,则形式化表示为

{ C = [ X , Y ] T E ( C ) = [ μ X , μ Y ] T Σ = V a r ( C ) = [ Σ X X , Σ X Y Σ Y X , Σ Y Y ] \left\{\begin{matrix}C=\left[X, Y\right]^T \\ E(C) =\left[\mu_X, \mu_Y\right]^T \\ \Sigma= Var(C)=\left[\begin{matrix}\Sigma_{XX},\Sigma_{XY}\\\Sigma_{YX},\Sigma_{YY}\end{matrix}\right] \end{matrix}\right. C=[X,Y]TE(C)=[μX,μY]TΣ=Var(C)=[ΣXX,ΣXYΣYX,ΣYY]

将X ,Y投影后得到的一维向量 f X f_X fX f Y f_Y fY

f X = a T X f Y = a T Y f_X=a^TX \\ f_Y=a^TY fX=aTXfY=aTY

f X f_X fX f Y f_Y fY的方差和协方差为

{ v a r ( f X ) = a T Σ X X a v a r ( f Y ) = b T Σ Y Y b c o v ( f X , f Y ) = a T Σ X Y b \left\{\begin{matrix}var(f_X)=a^T\Sigma_{XX}a \\ var(f_Y)=b^T\Sigma_{YY}b \\ cov(f_X,f_Y)=a^T\Sigma_{XY} b \\ \end{matrix}\right. var(fX)=aTΣXX

评论 29
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值