llamaindex示例1:Hello World!

        LlamaIndex是一个便捷的工具,它架起了自定义数据与强大的大型语言模型(如GPT-4)之间的桥梁。这一工具使得数据更易于访问,并为开发更智能的应用程序和工作流程奠定了基础。

        LlamaIndex在大型语言模型迅速发展的背景下,它如同一个多用途工具箱,在数据处理和大型语言模型应用的各个环节提供支持——从数据的摄取、结构化、检索到与应用框架的集成。

        LlamaIndex是构建基于大型语言模型支持的稳健应用程序的理想平台,适用于复杂问答系统、交互式聊天机器人及智能代理等场景。其核心优势在于检索增强生成(RAG),能够为用户提供坚实的基础组件。

        知识库:如同图书馆,存储了诸如FAQ、手册等信息资源,供系统在接收到问题时从中寻找答案。

        触发/查询:这是用户的提问或请求,触发系统即刻行动。

        任务/动作:系统理解触发器或查询后执行的操作,例如回答问题或执行特定指令。

为了实现RAG机制,LlamaIndex需要经过两个关键阶段:

        1)索引阶段:创建知识库
           - 数据连接器(readers):从各种源和格式中提取数据。
           - 文档/节点:数据容器,包含来自不同来源的信息,并通过元数据和关系增强,便于精准检索。
           - 数据索引:将获取的数据转化为可检索格式,涉及解析、嵌入及元数据推断,最终形成知识库。

        2)查询阶段:应用知识
           - 根据查询从知识库中提取相关上下文,并结合LLM的见解生成回应。此过程确保了LLM的回答基于最新且相关的信息,减少了错误的可能性。

        LlamaIndex的设计具有模块化特点,适合应用于问答系统、聊天机器人或代理控制的应用场景。

        查询引擎:负责接收自然语言查询并返回带上下文的响应。
        聊天引擎:支持多轮对话,促进用户与数据的互动。
        代理:自动执行任务,通过动态行动计划而非固定逻辑与环境交互。
        检索器:定义如何根据查询从知识库中提取相关上下文。
        节点后处理器:对节点集合进行调整、筛选或重排序。
        响应合成器:指导LLM根据检索到的文本块生成响应。

        在利用LlamaIndex的过程中,上述组件构成了其基本架构,为用户提供了一个灵活而强大的工具集。

        下面我们用三个示例代码,来带大家体验llamainde的应用。

        1、安装依赖

!pip install llama-index-core
!pip install llama-index-llms-dashscope
!pip install llama-index-embeddings-dashscope


from llama_index.core.tools import FunctionTool
from llama_index.core.agent import ReActAgent
from llama_index.embeddings.dashscope import DashScopeEmbedding, DashScopeTextEmbeddingModels, DashScopeTextEmbeddingType
from llama_index.llms.dashscope import DashScope, DashScopeGenerationModels

          2、初始llm代理,这里我们使用阿里的在线大模型千问

# 初始化 llm
llm =  DashScope(
    model_name=DashScopeGenerationModels.QWEN_TURBO, api_key='xxxxx'
)

# 初始化 ReAct 代理程序
agent = ReActAgent.from_tools([], llm=llm, verbose=True)

          3、示例1:对话

agent.chat("你好,你是谁?")

          4、示例2:使用自定义工具

# 定义示例工具
def multiply(a: int, b: int) -> int:
    """将两个整数相乘并返回结果整数"""
    return a * b


multiply_tool = FunctionTool.from_defaults(fn=multiply)

agent = ReActAgent.from_tools([multiply_tool], llm=llm, verbose=True)
agent.chat("11 * 22等于多少?")

          5、示例2:使用llamaindex自带工具,检索问题

#!pip install  llama-index llama-index-tools-tavily-research
from llama_index.tools.tavily_research.base import TavilyToolSpec
# create a react agent to use tavily tool
Tavi_spec = TavilyToolSpec(
    api_key='tvly-xxxx',
)
# Get the search tavily tool
Tavi_spec_tool =Tavi_spec.to_tool_list()[0]
agent = ReActAgent.from_tools([Tavi_spec_tool], llm=llm, verbose=True)
agent.chat("京东创始人是谁?")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值