2022-10-24 dell R740服务器 安装显卡 NVIDIA Tesla P40 24GB

本文详细介绍了在VSAN环境中为主机添加NVIDIA Tesla P40显卡的步骤,包括进入维护模式、安装显卡、连接供电、安装驱动以及在虚拟机中测试的过程。特别强调了驱动版本匹配的重要性,以及在安装后可能出现的黑屏情况和解决办法,如通过RDP或Horizon连接登录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.环境

在vsan下 给一台主机加装显卡Tesla P40

2.将先主机进入维护模式,再关机

3.开始插入显卡连接好供电线 (小8P+8+8P)

4. 重启开机,并安装驱动

 5.开启一台虚机测试

安装虚拟机驱动,注意一定要使用安装包内对应版本的驱动(使用不同版本可能会有问题)

安装驱动后,重启虚拟机,在控制台界面,看到“黑屏”,这是正常的。使用远程桌面RDP协议登录,或者Horizon连接服务器的方式登录。

更多其他参考

VMware ESXi安装NVIDIA GPU显卡硬件驱动和配置vGPU_51CTO博客_VMware显卡驱动

Nvidia Tesla 系列显卡安装驱动 · DTS Documents (g-bim.cn)

(6条消息) VMware ESXi安装NVIDIA GPU显卡硬件驱动和配置vGPU_奋斗的小青年I的博客-CSDN博客_vmware如何使用nvidia显卡

### 部署 QwQ-32B 模型于 Tesla P40 24GB GPU 对于在 Tesla P40 24GB 显卡上部署 QwQ-32B 模型而言,需考虑该模型参数量庞大以及显存占用情况。Tesla P4024 GB GDDR5 内存在处理大规模深度学习模型时可能面临挑战[^1]。 #### 准备环境 为了确保顺利运行,建议使用支持 CUDA 和 cuDNN 加速的 Python 环境,并安装 PyTorch 或 TensorFlow 这样的框架来加载预训练权重文件并执行推理操作。此外还需要配置合适的驱动版本以匹配所选深度学习库的要求[^2]。 #### 调整批大小与优化器设置 由于硬件资源有限,在实际测试过程中应当适当减小批量尺寸(batch size),从而降低每次迭代所需的临时存储空间;同时可以尝试调整其他超参比如学习率、动量等提高收敛速度的同时减少内存消耗[^3]。 #### 使用混合精度训练(Mixed Precision Training) 通过采用 FP16 数据格式代替传统的 FP32 来表示浮点数能够有效节省一半以上的显存开销而不影响最终效果^4]。这通常涉及到修改代码中的某些部分以便启用自动混合精度特性(Automatic Mixed Precision, AMP)[^4]。 ```python from torch.cuda import amp scaler = amp.GradScaler() for input, target in data_loader: optimizer.zero_grad() with amp.autocast(): output = model(input) loss = criterion(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() ``` #### 启用分布式数据并行(Distributed Data Parallel, DDP) 如果单张 Tesla P40 不足以支撑整个计算任务,则可利用多机多卡方案来进行加速。DDP 是一种高效的实现方式之一,它允许每个进程拥有独立副本并通过 all-reduce 协议同步梯度更新信息[^5]。 ```python import os import torch.distributed as dist from torch.nn.parallel import DistributedDataParallel as DDP def setup(rank, world_size): os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '12355' # initialize the process group dist.init_process_group("nccl", rank=rank, world_size=world_size) model = Model().to(device) ddp_model = DDP(model, device_ids=[device]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值