【算法梳理】决策树

本文深入探讨了决策树的基础知识,包括信息熵、信息增益、基尼不纯度等概念,以及ID3、C4.5、CART算法的工作原理和应用场景。还介绍了回归树的原理和防止过拟合的方法,如剪枝,并讨论了模型评估的留出法、交叉验证法和自助法。最后提到了使用sklearn库构建决策树的参数详解和Python绘制决策树的技巧。
摘要由CSDN通过智能技术生成

目录

1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)

2.决策树的不同分类算法(ID3算法、C4.5、CART分类树)的原理及应用场景

3. 回归树原理

4. 决策树防止过拟合手段

5. 模型评估

6. sklearn参数详解,Python绘制决策树


1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度)

  • 熵(信息熵)

度量样本集合纯度最常用的指标。假设样本集合D中第k类样本所占的比例为pk,则D的信息熵定义为:

Ent(D)值越小,D的纯度越高。

  • 联合熵

两个随机变量X,Y的联合分布,可以形成联合熵(Joint Entropy),用H(X, Y)表示。

  • 条件熵

H(X, Y) - H(Y):

表示(X, Y)发生所包含的熵,减去Y单独发生包含的熵:在Y发生的前提下,X发生新带来的熵。

H(X|Y)推导如下:

 

用处:决策树的特征选择,实际上使用的信息增益,就是用G(D,A)=H(Y)-H(Y|X)。可以看出在X的条件下,Y的不确定度下降了多少。

  • 相对熵/交叉熵/K-L散度

相对熵,又称互熵,交叉熵,鉴别信息,Kullback-Leible散度等。

  • 互信息

两个随机变量X,Y的互信息,定义为X,Y的联合分布和独立分布乘积的相对熵。

H(X|Y) = H(X) - I(X, Y)。即互信息为0,则随机变量X和Y是互相独立的。

  • 各种熵之间的关系

  • 信息增益(ID3)

属性a对样本D进行划分获得的‘信息增益’定义如下:

Dv表示样本集合D中在属性a上取值为av的样本。信息增益越大意味着属性a进行划分得到的“纯度提升”越大。

信息增益对取值数目较多的属性有偏好。

  • 增益率(C4.5)

定义如下:

IV(a)是属性a的固有值。属性a的可能取值越多,IV(a)通常越大。增益率准则对于取值数目少的属性有偏好。

C4.5不是选择增益率最大的属性,而是采用了一种启发式:先从候选属性中找到信息增益高于平均水平的属性,再从中选择增益率最高的。

  • 基尼不纯度(CART决策树)

数据集D的纯度可以用基尼值(基尼不纯度)来度量:

反应了从数据集D中随机抽取两个样本,其类别标记不一致的概率。Gini(D)越小&

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值