机器学习之决策树 Decision Tree(一)

本文介绍了决策树的构造,包括信息增益、信息增益率和基尼指数的概念及应用。接着讨论了剪枝处理,如预剪枝、后剪枝和损失函数。此外,还详细讲解了如何处理连续值和缺失值。最后,分析了随机森林的优缺点及算法,指出其在机器学习中的广泛应用和优势。
摘要由CSDN通过智能技术生成

一、决策树

        决策树是一个树结构(可以是二叉树或非二叉树),每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,按照其值选择输出分支,直到到达叶节点,将叶节点存放的类别作为决策结果。

二、决策树的构造

        构造决策树的关键步骤是在某个节点处按照某一特征属性的不同划分构造不同的分支,其目标是让各个分裂子集尽可能地“纯”,就是尽量使一个分裂子集中待分类项属于同一类别。不纯度的选取有多种方法,每种方法形成了不同的决策树方法。ID3算法使用信息增益作为不纯度,C4.5算法使用信息增益率作为不纯度,CART算法使用基尼系数作为不纯度。

2.1 信息增益

        在信息论与概率统计中,熵(entropy)是表示随机变量不确定性的度量。设D为训练样本的一组划分,则D的熵表示为:


        其中pi表示第i个类别在整个训练集中出现的概率,可以用属于此类别样本的数量除以训练集样本总数作为估计。
        假设将训练集按属性A进行划分,产生v个分支结点,其中第j个分支结点记为Dj,考虑到不同分支结点所包含的样本数不同,赋予权重,即样本数越多的分支结点影响越大,则A对D划分的期望信息为:


        信息增益即为二者的差值:

        一般而言,信息增益越大,意味着使用属性A来进行划分所获得的纯度提升越大,因此可用信息增益进行决策树的划分属性选择,ID3决策树学习算法就是以信息增益为准则来选择划分属性。


        以A1、A2、A3、A4分别表示年龄、有工作、有自己的房子和信贷情况四个特征。分别计算各特征的信息增益,选择信息增益值最大的特征作为最优特征。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值