数学模型算法实现之Lingo求解二

本文介绍了使用Lingo软件解决最短路径问题和匹配问题的方法。在最短路径问题中,通过图论和带权邻接矩阵进行建模。而在匹配问题中,注意到原问题中的错误并指出它是0-1线性规划问题,通过最大化总效率的目标函数和约束条件来求解。
摘要由CSDN通过智能技术生成

Shortest_route (最短路径问题)

 

这种最短路径问题也可以用图论

MODEL:

SETS:
CITIES/S,A1,A2,A3,B1,B2,C1,C2,T/:L;   !定义城市集合,L(i)为对应的属性(S到城市i最短路径)
ROADS(CITIES,CITIES)/         
A1,B1 A1,B2 A2,B1 A2,B2 A3,B1 A3,B2
B1,C1 B1,C2 B2,C1 B2,C2
C1,T C2,T/:D;
!ROADS表示城市间道路集合,由CITIES导出的一个派生集合(请特别注意其用法),由于
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值