填数游戏(暴力枚举+回溯剪枝实现)

前两天被一个小伙伴问到一个填数游戏,就是在一个9*9的方格里每行填入1~9的某个排列,使得每列和每宫也都是由1~9组成。

当时就觉得这不就是按个试嘛,人工解决的话有点智能的地方就是在试的过程中排除掉不可能的结果。我觉得严格的推理可以填出来几个空。

不过自己懒得算了,打算编码实现。

我大致说一下思路:用全排列函数生成符合要求的排列,然后存储的动态二维数组里面,再然后就是关键了:9层循环暴力解决,按个搜索是不是要找的key。当然期间要加入限定条件实现剪枝操作。要不时间会爆掉的!!!哭

运行结果前9行的乘积是未用回溯法的比较次数。

 

这道题可以使用回溯算法来解决。 首先,我们可以将数字 1~10 分别放入一个数组中。然后,从第一个格子开始,依次尝试将数字填入,每填入一个数字,就判断与其相邻的数字之和是否为素数,如果不是,则回溯到上一个格子重新填入数字。 具体实现可以参考以下代码: ```python # 判断是否为素数 def is_prime(n): if n <= 1: return False for i in range(2, int(n ** 0.5) + 1): if n % i == 0: return False return True # 回溯算法 def backtracking(board, nums, row=0, col=0): if row == 3: # 所有格子都已填入数字,输出结果 print(board) return for num in nums: if num in board[row]: # 数字已经被使用过,跳过 continue if col > 0 and not is_prime(num + board[row][col-1]): # 左边格子中的数字与当前数字之和不为素数,回溯 continue if row > 0 and not is_prime(num + board[row-1][col]): # 上边格子中的数字与当前数字之和不为素数,回溯 continue board[row][col] = num # 填入数字 if col == 2: # 当前行已填满,进入下一行 backtracking(board, nums, row+1, 0) else: # 进入下一个格子 backtracking(board, nums, row, col+1) board[row][col] = 0 # 回溯 # 初始化 board = [[0] * 3 for _ in range(3)] nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # 开始回溯 backtracking(board, nums) ``` 这段代码中,`board` 是一个 3x3 的二维数组,用于存储填入的数字;`nums` 是一个包含数字 1~10 的列表,用于存储所有可用的数字。`backtracking` 函数用于进行回溯搜索,其中 `row` 和 `col` 分别表示当前格子的行和列,初始值为 0。在 `backtracking` 函数中,首先判断是否已经填满了所有格子,如果是,则输出结果并返回;否则,依次尝试将数字填入当前格子,如果填入的数字已经被使用过,则跳过;如果当前格子与其相邻格子中的数字之和不为素数,则回溯到上一个格子重新填入数字。最后,如果当前行已经填满了,则进入下一行的第一个格子;否则,进入下一个格子。在进入下一个格子之前,需要将当前填入的数字存入 `board` 数组中;在回溯时,需要将 `board` 数组中的对应格子重置为 0。 运行上述代码,即可得到所有满足要求的填字算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值