FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS 论文笔记

本文是关于《FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS》的论文笔记,探讨了如何利用GNN进行Few-shot学习。GNN作为CNN在非欧几里得空间的扩展,适用于semi-supervised、few-shot learning和active learning任务。在Few-shot learning场景下,GNN通过图模型进行后验推理,传播标签信息。文章还介绍了GNN层的计算过程,包括message-passing机制和邻接矩阵的softmax归一化,以及初始化节点特征的方法。
摘要由CSDN通过智能技术生成

论文链接:FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS

Idea:

  • Few-shot 学习不依靠于规则化扩展数据集来补偿缺少有监督数据对模型带来的影响,而是受启发与人类学习去探索相似任务在空间上的分布情况。
  • GNN网络实际是CNN网络在非欧几里得空间上的扩展。

 

Problem Set-up

以下的定义可以应用于semi-supervised,few-shot learning 和active learning 三个任务中:

被定义为输入输出对,是从部分被标记的图像数据中选择的。

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值