【动态规划 + 贪心】Codeforce1283E New Year Parties

撸题开始!

一、题目大意

题目的大致意思是,有n个朋友要开Party,他们都在同一个城市中,用x轴表示,每个朋友待在一个坐标上,以数组X的形式给出,其中xi表示第i个朋友的位置坐标(1≤xi≤n),每个朋友可以到隔壁开party,也就是第i个朋友可以到xi - 1,xi + 1去开Party,当然也可以不动。

题目给出n个朋友的初始位置x数组,要求求这些朋友开Party所占用的房间数的最大值和最小值。

二、题目思路以及AC代码

为了更加清楚的表达题目意思,这里我用一个样例来解释。

input:

7
4 3 7 1 4 3 3

output:
3 6

题目给出n=7,也就是有7个朋友,他们初始分别在4, 3, 7, 1, 4, 3, 3的位置上,这样的话我们就可以对他们进行分配,求解其占用房间数的最大值和最小值,当然要保证每个朋友仅能移动到 xi - 1, xi + 1 和 xi

那么我们考虑如何进行移动,首先,如果要求解占用房间数的最小值很简单,我们只需要遵从一个贪心方法即可,就是我们先将各个朋友的位置从小到大进行排序:

1 3 3 3 4 4 7

这里我们并不需要考虑人数问题,只需要考虑这些不同的数字,也就是坐标就可以,所以我们仅需要考虑如下的数组:

1 3 4 7

然后就可以将其抽象为一个取区间的问题,也就是想象我拿多少长度为2的框(长度为2是因为我仅仅能在±1移动)才能把所有的数框进去,这里的答案无疑就是3,也就是第一个答案,编程的话见代码,就是一个循环的事。

其次,我们考虑求解占用房间数的最大值,这个其实也很简单,求解最大值,换句话说,就是尽可能占用最多的房间,再换句话说,就是尽可能的把没有占用的房间占满。

那么我们定义一个dp[i],其表示在看到前i个的时候,最多占用多少个房间,这时候我们需要考虑的就是x数组(当然也是排序之后的),而不是简单的不同的数字了。考虑我们已知dp[i-1],刚看到第i个朋友,那么第i个朋友就有三个选择,要么去xi - 1,要么去 xi + 1,要么不动,但你仔细考虑,这三者应该是有顺序的,要按照xi - 1, xi , xi + 1的顺序才能保证结果最大。

以上就是基本思路,下面给出AC代码:

/*
 * Codeforce 1283E:
 * @ Author:    Johnson
 * @ Date:      2020.1.3
 */

#include <iostream>
#include <algorithm>
#define MAXN 200010
using namespace std;

int n;
bool vis[MAXN];
int x[MAXN];
int dp[MAXN];

void init() {
    for (int i=0;i<MAXN;i++) {
        x[i] = -1;
        vis[i] = false;
        dp[i] = 0;
    }
}

int main() {

    init();

    int minVal = MAXN;
    cin >> n;
    for (int i=1;i<=n;i++) {
        cin >> x[i];
        vis[x[i]] = true;
        if (x[i] < minVal) minVal = x[i];
    }

    sort(x+1, x+n+1);

    int res_min = 1;
    int left_i = minVal;
    for (int i=1;i<=n;i++) {
        if (vis[i] && i > left_i + 2) {
            res_min++;
            left_i = i;
        }
    }

    for (int i=1;i<=n;i++) {
        vis[i] = false;
    }
    dp[0] = 0;
    for (int i=1;i<=n;i++) {
        if (!vis[x[i] - 1]) {
            dp[i] = dp[i-1] + 1;
            vis[x[i] - 1] = true;
        }
        else if (!vis[x[i]]) {
            dp[i] = dp[i-1] + 1;
            vis[x[i]] = true;
        }
        else if (!vis[x[i] + 1]) {
            dp[i] = dp[i-1] + 1;
            vis[x[i] + 1] = true;
        }
        else {
            dp[i] = dp[i-1];
        }
    }

    cout << res_min << " " << dp[n] << endl;

    // system("pause");
    return 0;
}

如果有问题,欢迎大家留言!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值