每日一题,防止痴呆 = =
一、题目大意
给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/3sum-closest
二、题目思路以及AC代码
思路
考虑这题的话,首先想到三数之和,其实没有什么特殊的方法,也就只能枚举了,所以我们就要考虑如何才能对其进行有效的枚举。
再看题目给的数组长度,1000,那么直接枚举的O(N3)的方法被pass,那么我们可以考虑的时间复杂度是O(N2logN)或者O(N2)。
然后我的想法就是,我们可以只对前两个数 a 和 b 进行枚举,然后第三个数只要找距离 target - a - b最近的那个数就可以了,然而我们需要先对原数组进行排序,排序复杂度是O(NlogN),不会影响整体复杂度,然后在找距离 target - a - b 最近的数的时候可以用二分查找,这样,整个算法的复杂度就是O(N2logN)了,当然,官方解答使用的是O(N2)的算法,更快一点。
AC代码
#define MAX_INT 2147483647
class Solution {
public:
int findElement(vector<int>& nums, int l, int r, int x) {
if (l >= r) return l;
int mid = (l + r) >> 1;
if (nums[mid] == x) return mid;
else if (nums[mid] > x) return findElement(nums, l, mid, x);
else return findElement(nums, mid + 1, r, x);
}
int threeSumClosest(vector<int>& nums, int target) {
sort(nums.begin(), nums.end());
int n_size = nums.size();
int res = -MAX_INT;
int diff = MAX_INT;
for (int i=0;i<n_size-2;i++) {
for (int j=i+1;j<n_size-1;j++) {
int new_target = target - (nums[i] + nums[j]);
int idx = findElement(nums, j + 1, n_size - 1, new_target);
if (idx != j + 1) {
int l_diff = abs(nums[idx - 1] - new_target);
int r_diff = abs(nums[idx] - new_target);
if (l_diff < r_diff) {
if (l_diff < diff) {
res = nums[i] + nums[j] + nums[idx - 1];
diff = l_diff;
}
}
else {
if (r_diff < diff) {
res = nums[i] + nums[j] + nums[idx];
diff = r_diff;
}
}
}
else {
int r_diff = abs(nums[idx] - new_target);
if (r_diff < diff) {
res = nums[i] + nums[j] + nums[idx];
diff = r_diff;
}
}
}
}
return res;
}
};
如果有问题,欢迎大家指正!!!