【每日一题】LeetCode. 16. 最接近的三数之和

每日一题,防止痴呆 = =

一、题目大意

给定一个包括 n 个整数的数组 nums 和 一个目标值 target。找出 nums 中的三个整数,使得它们的和与 target 最接近。返回这三个数的和。假定每组输入只存在唯一答案。
在这里插入图片描述
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/3sum-closest

二、题目思路以及AC代码

思路

考虑这题的话,首先想到三数之和,其实没有什么特殊的方法,也就只能枚举了,所以我们就要考虑如何才能对其进行有效的枚举。

再看题目给的数组长度,1000,那么直接枚举的O(N3)的方法被pass,那么我们可以考虑的时间复杂度是O(N2logN)或者O(N2)。

然后我的想法就是,我们可以只对前两个数 a 和 b 进行枚举,然后第三个数只要找距离 target - a - b最近的那个数就可以了,然而我们需要先对原数组进行排序,排序复杂度是O(NlogN),不会影响整体复杂度,然后在找距离 target - a - b 最近的数的时候可以用二分查找,这样,整个算法的复杂度就是O(N2logN)了,当然,官方解答使用的是O(N2)的算法,更快一点。

AC代码
#define MAX_INT 2147483647

class Solution {
public:
    int findElement(vector<int>& nums, int l, int r, int x) {
        if (l >= r) return l;

        int mid = (l + r) >> 1;
        if (nums[mid] == x) return mid;
        else if (nums[mid] > x) return findElement(nums, l, mid, x);
        else return findElement(nums, mid + 1, r, x);
    }

    int threeSumClosest(vector<int>& nums, int target) {
        sort(nums.begin(), nums.end());

        int n_size = nums.size();
        int res = -MAX_INT;
        int diff = MAX_INT;
        for (int i=0;i<n_size-2;i++) {
            for (int j=i+1;j<n_size-1;j++) {
                int new_target = target - (nums[i] + nums[j]);
                int idx = findElement(nums, j + 1, n_size - 1, new_target);
                if (idx != j + 1) {
                    int l_diff = abs(nums[idx - 1] - new_target);
                    int r_diff = abs(nums[idx] - new_target);
                    if (l_diff < r_diff) {
                        if (l_diff < diff) {
                            res = nums[i] + nums[j] + nums[idx - 1];
                            diff = l_diff;
                        }
                    }
                    else {
                        if (r_diff < diff) {
                            res = nums[i] + nums[j] + nums[idx];
                            diff = r_diff;
                        }
                    }
                }
                else {
                    int r_diff = abs(nums[idx] - new_target);
                    if (r_diff < diff) {
                        res = nums[i] + nums[j] + nums[idx];
                        diff = r_diff;
                    }
                }
            }
        }

        return res;
    }
};

如果有问题,欢迎大家指正!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值