机器学习 -- 决策树(Ⅱ香农熵)

本文详细介绍了香农熵在机器学习决策树中的作用。首先定义了香农熵作为信息期望值,接着通过实例解释了熵的计算方法,指出熵值越小代表样本集合的不纯度越低。最后,提供了用Python实现计算香农熵的代码示例。
摘要由CSDN通过智能技术生成

一.定义

香农熵定义为信息的期望值。在信息论与概率统计中,熵是表示随机变量不确定性的度量。

假定当前样本集合D中一共有n类样本,第i类样本为Xi ,那么Xi的信息定义为:

举例:

若小明和小华下棋,两人势均力敌,则信息熵H = -((1/2) log2 (1/2) + (1/2) log2 (1/2)) = 1bit。

二.计算

香农熵的计算公式为:

香农熵的值越小,则表明D的不纯度越低。

三.代码实现

计算香农熵的python函数实现:

# 计算香农熵
def calEnt(dataSet):
    n = dataSet.shape[0]  # 数据集总行数
    iset = dataSet.iloc[:, -1].value_counts()  # 标签的所有类别
    p = iset / n  # 每一类标签所占比
    ent = (-p * (np.log2(p))).sum()
    return ent

假设有如下数据集,试着实现计算香农熵的python代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值