写在前面的话
如果您有任何地方看不懂的,那一定是我写的不好,请您告诉我,我会争取写的更加简单易懂!
如果您有任何地方看着不爽,请您尽情的喷,使劲的喷,不要命的喷,您的槽点就是帮助我要进步的地方!
计算给定数据的信息熵
在决策树算法中最重要的目的我们已经在前几章说过了,就是根据信息论的方法找到最合适的特征来划分数据集。在这里,我们首先要计算所有类别的所有可能值的香农熵,根据香农熵来我们按照取最大信息增益(information gain)的方法划分我们的数据集。
我们的数据集如下表所示:
根据这张表,我们使用python来构建我们的数据集。
#!/usr/bin/env python
# coding=utf-8
# author: chicho
# running: python trees.py
# filename : trees.py
def createDataSet():
dataSet = [[1,1,'yes'],
[1,1,'yes'],
[1,0,'no'],
[0,1,'no'],
[0,1,'no']] # 我们定义了一个list来表示我们的数据集,这里的数据对应的是上表中的数据
labels = ['no surfacing','flippers']
return dataSet, labels
其中第一列的1表示的是不需要浮出水面就可以生存的,0则表示相反。 第二列同样是1表示有脚蹼,0表示的是没有。
在构建完数据集之后我们需要计算数据集的香农熵。
根据香农熵的定义可以知道:
根据这个公式我们来编写相应的代码。(注意:我们是计算每个类别的香农熵,也就是鱼类还是非鱼类的香农熵。在这我们的数据集当中我们用’yes’表示是鱼类,用‘no’表示非鱼类)
# 代码功能:计算香农熵
from math import log #我们要用到对数函数,所以我们需要引入math模块中定义好的log函数(对数函数)
def calcShannonEnt(dataSet):#传入数据集
# 在这里dataSet是一个链表形式的的数据集
countDataSet = len(dataSet) # 我们计算出这个数据集中的数据个数,在这里我们的值是5个数据集
labelCounts={
} #