LIS(Longest Increasing Sequence)最长上升子序列模型(朴素 + 贪心两种做法)

LIS(Longest Increasing Sequence)

朴素做法O(n^2)

  • 状态表示:f[i]表示以a[i]结尾的IS的长度的最大值,或者说是(a[0]~a[i])这一段序列的LIS
  • 状态表示f[i]
    • 集合: 以a[i]结尾的递增子序列
    • 属性: 长度最大值
  • 状态计算
    • a[pre] < a[i]f[i] = max(f[i], f[pre] + 1)
#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 1000 + 100;

int a[N], f[N];
int n;

int main()
{
    scanf("%d", &n);
    
    for (int i = 1; i <= n; i ++) scanf("%d", a + i);
    
    for (int i = 1; i <= n; i ++)
    {
        f[i] = 1;
        for (int j = 1; j < i; j ++)
            if (a[j] < a[i]) f[i] = max(f[i], f[j] + 1);
    }
    
    int res = -1;
    for (int i = 1; i <= n; i ++) res = max(res, f[i]);
    
    printf("%d\n", res);
    return 0;
}

贪心做法O(nlogn)

首先要确定一件事情:最长上升子序列遵循如下的单调性:

即LIS的长度越长,那么对应子序列末尾元素的值应该更大。

证明:以下图为例,若b < a,那么a元素可以加在长度为4末尾元素为b的子序列后边,最终的LIS长度为5且末尾元素为a。但这明显与图中不符,所以a > b恒成立。

在这里插入图片描述

图片来自https://www.acwing.com/user/myspace/index/1301

该做法蕴含了一个贪心的思想,对于同样长度的子串,我当然希望它的末端越小越好,这样以后我也有更多机会拓展。

示例代码1:

#include<cstdio>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 1e5 + 100;

int a[N], f[N];
// f[i] 表示长度为i的LIS的末尾元素。
int n;

int main()
{
    scanf("%d", &n);
    
    for (int i = 1; i <= n; i ++) scanf("%d", a + i);
    // 初始时,长度为1的子序列末尾元素就是a[1]
    f[1] = a[1];
    int cnt = 1;
    // 从第二个元素开始遍历
    for (int i = 2; i <= n; i ++)
    {
        // 若该元素大于最长的子序列末尾元素,就将该元素加入到该序列末尾,
        // 否则,利用二分的方式,从f[]中找到小于该元素的最大值f[j],将元素a[i]加到a[j]对应的序列的末尾.
        // 注意,加入之后,LIS的长度就发生改变,所以要加入到下一个位置,即f[j + 1] = a[i];
        if (a[i] > f[cnt]) f[++ cnt] = a[i];
        else {
            int l = 1, r = cnt;
            while(l < r)
            {
                int mid = l + r >> 1;
                if (a[i] > f[mid]) l = mid + 1;
                else r = mid;
            }
            f[r] = a[i];
        }
    }
    
    printf("%d\n", cnt);
    return 0;
}

Y总的简洁代码

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n;
int a[N];
int q[N];

int main()
{
    scanf("%d", &n);
    for (int i = 0; i < n; i ++ ) scanf("%d", &a[i]);

    int len = 0;
    for (int i = 0; i < n; i ++ )
    {
        int l = 0, r = len;
        while (l < r)
        {
            int mid = l + r + 1 >> 1;
            if (q[mid] < a[i]) l = mid;
            else r = mid - 1;
        }
        len = max(len, r + 1);
        q[r + 1] = a[i];
    }

    printf("%d\n", len);

    return 0;
}

LIS扩展

1、相邻元素差绝对值不超过d的最长子序列问题

与此题相同的还有 左右不相邻的最长子序列长度

问题描述:

输入数组 A[0:n]和正实数 d,试设计一个动态规划算法输出 A[0:n]的一个最长子序列,使得子序列中相继元素之差的绝对值不超过 d。分析算法的时间复杂度。

这个问题刚开始拿到没啥思路,一直想不到这个问题的最优子结构,后来看到了最长递增子序列问题的解,发现这个问题和最长递增子序列问题的思路类似。

我们来回忆一下最长递增子序列问题,我们在处理这个问题的时候可以进行一些适当的转换。尽管题目要求求A[0:n]的最长递增子序列,但是因为每个序列都有一个处在最后的元素,因此可以转换为求以某个元素结尾的最长递增子序列问题,最后只要一个O(n)的遍历就能得到最长递增子序列了。这么转换的好处是最优子结构一目了然,比如说我们找到了一个最长递增子序列b1b2…bn,那么显然,b1…bn-1为a0…bn-1的最长递增子序列,因为如果不是,那么将更长的和bn组合起来,就得到了一个比b1…bn还长的序列,这与我们的假设矛盾。在找到了最优子结构以后,很容易的可以写出递归式:

设list[i]存储的为以A[i]结尾的最长递增子序列,那么list[i]=max{list[j]}+1(其中j<i,且A[i]>A[j])如果不存在A[j]那么list[i]=1.

这个算法很简单就能写出来了。

而回过头看这个题,其实并没有啥区别。一个序列a1a2a3…an的最长这个子序列为b1b2b3…bk,那么显然,b1…bk-1是以bk-1结尾的最长这个子序列,证明方法还是复制剪切法。所以我们很容易的可以得到一个递归式:

设dis[i]保存的是以A[i]结尾的最长的这个子序列的长度,那么dis[i]=max{dis[j]}+1 其中j<i且要求满足A[j]与A[i]的差的绝对值小于d.

得到了递归式以后,我们很容易可以得到动态规划算法。

img

当然,最后还要遍历一下dis数组求出最大值。

原文链接:https://blog.csdn.net/qq_37694390/article/details/80637038

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Honyelchak

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值