F - Goldbach`s Conjecture LightOJ - 1259 (大力筛素数+BF)

题意:
给出一个n,找有多少对数字(a, b)满足

  1. both a and b is prime
  2. a+b = n
  3. a<=b

题解:
大力筛出1e7内的素数,然后暴力查找满足条件的数对,然后输出


AC代码:

#include <iostream>
#include <stdio.h>
#include <set>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <cmath>
#include <map>

using namespace  std;
typedef long long ll;
const int maxn = 1e7 + 10;
const ll inf = 0x3f3f3f3f;
typedef long double ld;
#define met(a, b) memset(a, b, sizeof(a))
#define rep(i, a, b) for(int i = a; i <= b; i++)
#define per(i, a, b) for(int i = a; i >= b; i--)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
inline ll mul(ll x, ll y, ll mod) {ll res = (x * y - (ll)(ld)(x / mod * y + 1e-8) * mod); return res < 0 ? res + mod : res;}
const double PI = acos(-1.0);
const int mod = 1000;
ll qPow(ll base, ll n) {ll res = 1; while(n) {if(n & 1) res = (res * base) % mod; base = (base * base) % mod; n >>= 1;} return res % mod;}
vector<int> prime;
bool vis[maxn];
void getPrime() {
    met(vis, false);
    rep(i, 2, 10000000 - 1) {
        if(vis[i]) continue;
        prime.pb(i);
        for(int j = i + i; j < 10000000; j += i) {
            vis[j] = true;
        }
    }
}
int main() {
    ll n;
    getPrime();
    int len = prime.size();
    int T, cas = 1;
    scanf("%d", &T);
    while(T--) {
        ll ans = 0;
        scanf("%lld", &n);
//        for(n = 2; n <= 10000000; n+=2) {
        rep(i, 0, len - 1) {
            if(prime[i] > n - prime[i]) break;
            if(!vis[n - prime[i]]) ans++;
        }
        printf("Case %d: %lld\n",cas++, ans);
//        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值