F - Goldbach`s Conjecture(数论+枚举)

本文介绍了一种求解特定范围内素数对数量的高效算法。通过预处理生成素数表,并利用该表快速判断一个数是否为素数,从而在给定区间内找出所有素数对。

在这里插入图片描述
在这里插入图片描述
签到题,直接枚举([2,n/2]因为其他的都是对称的)就OK,当然在判断素数的时候不能judge函数,因为用了judge肯定TLE了。
AC代码:

#include<map>
#include<list>
#include<ctime>
#include<queue>
#include<deque>
#include<cmath>
#include<stack>
#include<string>
#include<cstdlib>
#include<cstring>
#include <iostream>
#include<algorithm>
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//ll gcd(ll a,ll b){
//   return b?gcd(b,a%b):a;
//}
//ll QP(ll x,ll n,ll Mod){
//     ll res=1;
//     while(n){
//       if(n&1){
//         res=(res*x)%Mod;
//       }
//       x=(x*x)%Mod;
//       n>>=1;
//     }
//       return res;
//}
const int N = 1e7 + 10;
int pri[700010], k;//k记录素数的个数这里的素数是从下标为0开始的
bool Isprime[N];
void prime()
{
    k = 0;
    memset(Isprime, true, sizeof(Isprime));
    Isprime[1] = false;
    for(int i = 2 ; i < N ; i++)
    {
        if(Isprime[i])
        {
            pri[k++] = i;
            for(int j = 2 ; i * j < N ;j++)
                Isprime[i * j] = false;
        }
    }
}
int main(){
	 ios_base::sync_with_stdio(false);
	 prime();
      int T,n,ans,g=1;
      scanf("%d",&T);
    
      while(T--){
      	ans=0;
      	  scanf("%d",&n);
      	  int i;
      	  for( i=0;i<k&&pri[i]<=n/2;i++){
      	  	    if(Isprime[n-pri[i]]){
      	  	    	  ans++;
					}
			}
			printf("Case %d: %d\n",g++,ans);
	  }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值