一 题目描述
在二维数组grid
中,grid[i][j]
代表位于某处的建筑物的高度。 我们被允许增加任何数量(不同建筑物的数量可能不同)的建筑物的高度。 高度 0 也被认为是建筑物。
最后,从新数组的所有四个方向(即顶部,底部,左侧和右侧)观看的“天际线”必须与原始数组的天际线相同。 城市的天际线是从远处观看时,由所有建筑物形成的矩形的外部轮廓。 请看下面的例子。
建筑物高度可以增加的最大总和是多少?
例子: 输入: grid = [[3,0,8,4],[2,4,5,7],[9,2,6,3],[0,3,1,0]] 输出: 35 解释: The grid is: [ [3, 0, 8, 4], [2, 4, 5, 7], [9, 2, 6, 3], [0, 3, 1, 0] ] 从数组竖直方向(即顶部,底部)看“天际线”是:[9, 4, 8, 7] 从水平水平方向(即左侧,右侧)看“天际线”是:[8, 7, 9, 3] 在不影响天际线的情况下对建筑物进行增高后,新数组如下: gridNew = [ [8, 4, 8, 7], [7, 4, 7, 7], [9, 4, 8, 7], [3, 3, 3, 3] ]
说明:
1 < grid.length = grid[0].length <= 50
。-
grid[i][j]
的高度范围是:[0, 100]
。 - 一座建筑物占据一个
grid[i][j]
:换言之,它们是1 x 1 x grid[i][j]
的长方体。
二 解题思路
1.我们首先得了解这道题到底在讲什么,所谓的天际线就是水平方向各个数组的最大元素的集合,以及竖直方向的相对应下标最大的元素的集合
2.这道题是要求 建筑物高度可以增加的最大总和是多少,换句话说,每一个元素在竖直方向和水平方向上能取的最大值,即两个方向对于元素的天际线的较小值
3.所以我应该先得出两组方向的天际线组,然后比较这两个天际线数组的所对应的下标的那个值最小,与当前数组相对应的下标元素相减,即得到该下标的元素可以增加的长度,以此类推累加即可得到最大增加长度的总和
三 代码实战
public static int maxIncreaseKeepingSkyline(int[][] grid) {
// 水平方向拿到天际线
int [] rowMax = new int[grid.length];
for (int i=0;i<grid.length;i++){
int rowMaxNum = 0;
for(int j=0;j<grid[i].length;j++){
if(grid[i][j]>rowMaxNum){
rowMaxNum=grid[i][j];
}
}
rowMax[i]=rowMaxNum;
}
// 竖直方向拿到天际线
int [] colMax = new int[grid.length];
for (int i=0;i<grid.length;i++){
int colMaxNum = 0;
for(int j=0;j<grid[i].length;j++){
if(grid[j][i]>colMaxNum){
colMaxNum=grid[j][i];
}
}
colMax[i]=colMaxNum;
}
// 求最大值的总和
int sum =0;
for(int i =0;i<grid.length;i++){
for (int j =0; j<grid[i].length;j++){
int min = 0;
if(rowMax[i]>=colMax[j]){
min = colMax[j];
}else {
min = rowMax[i];
}
sum = sum +min-grid[i][j];
}
}
return sum;
}