# 最强AI扩图神器!完全免费开源,支持本地部署,diffusers-image-outpaint 最新配置教学!

## 引言

大家好!今天我要为大家介绍一款超级强大的AI扩图神器——**diffusers-image-outpaint**。这款工具不仅完全免费开源,还支持本地部署,让你在家就能轻松实现高质量的图像扩展。无论你是图像编辑师、游戏开发者,还是VR内容创作者,这款工具都能帮你大大提高工作效率。本文将详细介绍diffusers-image-outpaint的功能,并提供最新的配置教学,让小白也能轻松上手。

## 什么是diffusers-image-outpaint?

diffusers-image-outpaint是一款基于扩散模型的图像外延技术工具。它能够根据已有的图像内容,生成图像的额外部分,使得图像生成更加自然和逼真。该工具基于Realvist V5 Lightning模型创建,能够在两秒内完成图像扩展,无论是横向还是竖向延伸都能获得不错的效果。

## 功能亮点

- **高效扩图**:只需几秒钟即可完成图像扩展。
- **多平台支持**:支持CPU、NVIDIA CUDA等多种执行平台。
- **智能生成**:根据原始图像类型,生成与原图风格一致的新图像。
- **无限外扩**:可以将上一次的输出作为下一次的输入,实现对图片的无限外扩。

## 下载和安装教程

### 环境准备

在开始安装之前,我们需要准备好以下环境:

1. **Python 3.8+**:推荐使用Python 3.8版本。
2. **pip**:Python包管理工具。
3. **Git**:用于克隆项目仓库。
4. **FFmpeg**:用于处理音视频文件。
5. **CUDA Toolkit 11.8**(仅限NVIDIA GPU用户):用于GPU加速。

### 安装步骤

#### 1. 克隆代码库

首先,我们需要克隆diffusers-image-outpaint的GitHub仓库。打开终端或命令提示符,运行以下命令:

```bash
git clone https://github.com/hacksider/diffusers-image-outpaint.git
```

#### 2. 创建并激活虚拟环境

进入项目目录并创建一个虚拟环境,避免依赖冲突:

```bash
cd diffusers-image-outpaint
python -m venv venv
source venv/bin/activate  # Windows用户使用 venv\Scripts\activate
```

#### 3. 安装依赖

在虚拟环境中安装所需的Python依赖包:

```bash
pip install -r requirements.txt
```

#### 4. 下载模型

首次运行程序时,模型文件会自动下载。你也可以手动下载以下模型并放到“models”文件夹中:

- GFPGANv1.4
- inswapper_128_fp16.onnx

#### 5. 运行程序

安装完成后,我们可以运行程序:

```bash
python run.py
```

#### 6. 使用GPU加速(可选)

如果你的设备支持GPU加速,可以按照以下步骤进行配置:

1. 安装CUDA Toolkit 11.8。
2. 安装GPU版本的ONNX Runtime:

```bash
pip uninstall onnxruntime onnxruntime-gpu
pip install onnxruntime-gpu==1.16.3
```

3. 使用以下命令运行程序:

```bash
python run.py --execution-provider cuda
```

### 使用指南

当你第一次运行程序时,它会下载一些约300MB大小的模型。执行`python run.py`命令将启动如下窗口:

1. **选择源图像**:上传一张包含所需扩展的图像。
2. **选择扩展方向和比例**:可以自由调节扩展图片的宽高比,选择横向或竖向扩图。
3. **开始处理**:点击“生成”按钮,diffusers-image-outpaint将自动进行图像扩展处理。

你可以单击并拖动扩展图像来查看效果,还可以点击“用作输入图”将生成的扩图作为源图进行二次扩图。

## 常见问题

### 1. 扩展图像出现异常

解决方案:

```bash
pip uninstall onnxruntime onnxruntime-gpu
pip install onnxruntime-gpu==1.16.3
```

### 2. 运行`python run.py`黑框卡住

可能是网络设置的问题,因为一些众所周知的原因可能需要Proxy。

### 3. Windows系统一键安装

项目整合了setup的bat文件,可以尝试用bat文件进行一键安装。

## 总结

diffusers-image-outpaint是一款功能强大且易于使用的AI扩图工具,能够在几秒钟内完成高质量的图像扩展。通过本文的教程,相信即使是小白用户也能轻松上手。如果你对这款工具感兴趣,不妨下载试试吧!

希望这篇文章对你有所帮助,祝你玩得开心!

: [diffusers-image-outpaint GitHub 仓库](https://github.com/hacksider/diffusers-image-outpaint)

 

diffusers 原生 text-to-image 的 fft (Fast Fourier Transform) 方法使用的数据集为 parquet 格式,需要进行适配。 parquet 是一种列式存储格式,能够高效地存储和处理大规模数据。为了适配这种格式,我们需要执行以下步骤: 1. 读取数据集:使用 Parquet 库或工具,如 Apache Parquet、Dask 或 PyArrow,读取 parquet 格式的数据集文件。这些工具提供了函数和方法来加载和操作 parquet 数据集。 2. 数据预处理:根据 fft 方法的要求,对读取的数据进行必要的预处理。这可能包括数据类型转换、缺失值处理、数据清洗等步骤,以确保数据符合要求。 3. 调整数据结构:根据 fft 方法的输入要求,可能需要将 parquet 数据集的列或行重新排列以适应 fft 的输入结构。这可以通过列索引或行索引操作来实现。 4. 执行 fft:使用 fft 方法对预处理后的数据进行转换。可以使用现有的 fft 函数或库,如 numpy.fft 或 scipy.fft,对数据进行 fft 变换。根据具体需求,可能需要在这一步中设置相关参数,如采样频率、分辨率等。 5. 结果保存:将 fft 结果保存为适当的数据格式,以便后续使用或分析。parquet 格式是一种可选的选择,也可以将结果保存为其他常见的像格式,如 PNG、JPEG 等。 通过以上步骤,我们可以将 diffusers 原生 text-to-image 的 fft 方法适配到 parquet 格式的数据集上。这样,我们可以充分利用 parquet 格式的优势,加快数据处理速度,并满足 fft 方法对数据结构的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI刀哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值