注意力机制(Attention Mechanism)

Attention机制最近几年在NLP中十分火爆,这篇文章主要是对po主在学习过程中的知识做个总结,只涉及比较浅显的概念部分,不涉及具体的数学计算。文章主要参考张俊林大神的知乎专栏:深度学习中的注意力模型(2017版)

简介

注意力机制最近几年在深度学习各个领域被广泛使用,无论是图像处理、语音识别还是自然语言处理的不同类型任务中,都很容易遇到注意力模型的身影。

发展历史

第一阶段:Attention机制与图像处理

Attention机制一开始更多的是应用于图像领域,最早也是在视觉图像领域提出来的(大约九几年)。但真正火起来是 2014 年 Google Mind 团队的论文 Recurrent Models of Visual Attention ,他们在 RNN 模型上使用了 Attention机制来进行图像分类。

2015年Kelvin Xu的一篇论文 Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ,在图像描述生成中引入了Attention,文章提出了两种Attention模式,即Soft Attention 和 Hard Attention。

Soft Attention会考虑所有位置,而Hard Attention会专注于很小的区域。
两者各有优缺点: Soft Attention是参数化的,因此可导,可以被嵌入到模型中去,直接训练。梯度可以经过Attention Mechanism模块,反向传播到模型其他部分。
Hard Attention聚焦于部分区域,实现的方法是依概率采样输入端隐状态的一部分来进行计算,而不是整个encoder的隐状态。所以是一个随机的过程,需要采用蒙特卡洛采样的方法来估计模块的梯度。
目前更多的研究和应用还是更倾向于使用Soft Attention。

图1
上图中,白色部分代表注意力随时间的变化。上面是Soft Attention,可以看到相对分散;下面是Hard Attention,可以看到比较集中。

第二阶段:Attention机制与NLP

2014年,Bahdanau 等人在论文 Neural Machine Translation by Jointly Learning to Align and Translate 中,使用Soft Attention 机制在机器翻译任务上将翻译和对齐同时进行,算是第一个将 Attention 机制应用到 NLP 领域中。
在这里插入图片描述
上图是将英语翻译成法语的例子,白色方块代表注意力随翻译过程的分布情况,可以看到基本呈对角线分布。举个例子,翻译‘agreement’这个词时,注意力理所应当放在这个词本身。这也证明了Attention机制的有效性。

2015年,Effective Approaches to Attention-based Neural Machine Translation 是继上一篇论文后,一篇很具代表性的论文。告诉了大家Attention在RNN中可以如何进行扩展。这篇论文对后续各种基于Attention的模型在NLP应用起到了很大的促进作用。在论文中他们提出了两种Attention机制,一种是Global Attention,一种是Local Attention。

Global Attention:
和传统的Attention model一样,所有的隐藏节点状态都被用于计算权重。不同的是在计算attention矩阵值的时候,文章提出了几种简单的扩展版本。
Local Attention:
在计算时并不是去考虑源语言端的所有词,而是根据一个预测函数,先预测当前解码时要对齐的源语言端的位置,然后通过上下文窗口,仅考虑窗口内的词。主要是为了减少Attention计算时的耗费。

2017年,Google机器翻译团队发表了Attention is all you need论文,获得了广泛关注和应用。这篇论文提出一种新型网络结构Transformer,该结构实际上是多层Self Attention堆叠,另外还提出了多头注意力(Multi-headed Attention)机制。

该论文提出的Transformer模型并行性好,又适合捕获长距离特征,未来很有可能取代RNN,因为RNN是序列型结构,并行计算能力受限。Transformer也成为GPT、BERT等预训练模型的特征提取器。
在这里插入图片描述

人类的视觉注意力

所以,介绍了这么多Attention机制的历史,Attention到底是什么呢?
其实Attention的思想很简单,和人类的选择性视觉注意力相似。
看下面这张图:
在这里插入图片描述
这是一个人在看这张图时的视觉注意力分布的热力图。可以看到,对于婴儿的头部、文章标题、首段落,分配的注意力明显更多。

其实Attention机制也是这个道理,核心目标也是从众多信息中选择出对当前任务目标更关键的信息,抑制其他无用信息。

Encoder-Decoder框架

介绍这个框架的原因是目前大多数注意力模型依附在Encoder-Decoder框架下,并且介绍Attention的各种文章都基于这个展开。但是Attention模型本身是一种独立的思想,要注意!(摘自大佬原话)
在这里插入图片描述
这就是Encoder-Decoder框架的结构,是一个句子(或篇章)生成另外一个句子(或篇章)的通用处理模型,是一种用于机器翻译、文本摘要、问答系统的常用框架。

假设,输入 S o u r c e = &lt; x 1 , x 2 , x 3 , x 4 &gt; Source=&lt;x_1,x_2,x_3,x_4&gt; Source=<x1,x2,x3,x4>,通过编码器Encoder就可以转换成中间语义表示 C = F ( x 1 , x 2 , x 3 , x 4 ) C=F(x_1,x_2,x_3,x_4) C=F(x1,x2,x3,x4)(这里的 F F F就是Encoder的某种非线性变换函数)。而Decoder在输出单词 y i y_i yi时,需要根据中间语义表示 C C C

<think>嗯,用户想了解Excel中的VLOOKUP函数的用法和参数含义。首先,我需要回忆一下VLOOKUP的基本结构。VLOOKUP是垂直查找函数,用于在表格的首列查找指定的值,然后返回该行中指定列的数据。它的四个参数分别是查找值、表格范围、列索引号和匹配模式。 接下来,我得确认每个参数的具体作用。第一个参数是lookup_value,也就是用户要查找的值,比如产品ID或者姓名。第二个参数是table_array,即查找的范围,这里要注意的是,查找值必须位于这个范围的第一列,否则函数无法正确工作。第三个参数是col_index_num,也就是用户想要返回的数据在表格范围中的第几列,这个列数是从表格范围的第一列开始算起的,不是整个工作表的列。第四个参数是range_lookup,决定是精确匹配还是近似匹配,通常用FALSE或0来指定精确匹配,避免错误。 然后,用户可能需要一个具体的例子来理解如何使用。比如,假设有一个产品价格表,用户想根据产品ID查找对应的价格。这时候,VLOOKUP就可以在ID列查找,然后返回价格列的数据。同时,要提醒用户注意表格范围最好使用绝对引用,比如$A$2:$C$100,这样在拖动公式时范围不会变化。 可能遇到的问题也需要考虑。比如,如果查找值不在表格的第一列,或者列索引号超过了表格的列数,函数会返回错误。此外,数据格式不一致也可能导致问题,比如查找值是数字,而表格中是文本格式的数字,这时候需要统一格式。还有,当出现#N/A错误时,可能是查找值不存在,或者匹配模式设置不正确,需要检查参数是否正确。 用户可能还会问到如何避免常见的错误,比如部分数据匹配出错的情况。这时候需要检查是否有多余的空格,或者数据格式不一致,或者表格范围没有锁定导致拖动时偏移。此外,XLOOKUP作为VLOOKUP的升级版,可能在某些情况下更方便,比如可以向左查找或者返回多列数据,这也是可以提及的内容。 最后,整理步骤,从基础语法到参数说明,再到具体案例,逐步引导用户理解如何使用VLOOKUP函数。同时,提供常见错误和解决方法,帮助用户在实际应用中避免问题。如果有必要,还可以比较VLOOKUP和其他查找函数的区别,比如HLOOKUP或XLOOKUP,但根据用户的问题,主要集中在VLOOKUP本身即可。</think>### Excel VLOOKUP函数详解 #### 一、基础语法与参数说明 VLOOKUP函数的语法为: $$=VLOOKUP(lookup\_value, table\_array, col\_index\_num, [range\_lookup])$$ 包含4个参数: 1. **lookup_value**(必填):要查找的值(如单元格引用或具体值) 2. **table_array**(必填):包含数据的表格范围(必须包含查找列和返回列) 3. **col_index_num**(必填):返回值所在列的序号(从table_array第一列开始计数) 4. **range_lookup**(可选):匹配类型 - `TRUE`/`1`:近似匹配(默认值,需数据升序排列) - `FALSE`/`0`:精确匹配(常用选项) [^1][^2] #### 二、使用步骤演示(工资表查询案例) 假设需要根据员工编号查询工资: 1. 建立查询单元格(如`B12`) 2. 输入公式: ```excel =VLOOKUP(A12, $A$2:$D$100, 4, 0) ``` - `A12`:待查询的员工编号 - `$A$2:$D$100`:锁定数据区域(绝对引用) - `4`:返回第4列(工资列) - `0`:精确匹配 [^2][^3] #### 三、常见错误与解决方法 | 错误现象 | 原因 | 解决方案 | |---------|------|---------| | #N/A | 查找值不存在 | 检查数据源或改用`IFERROR`容错 | | #REF! | 列序号超出范围 | 确认col_index_num ≤ 表格列数 | | 部分匹配失败 | 数据格式不一致 | 统一数值/文本格式 | | 结果错位 | 表格未锁定 | 使用`$`符号固定区域引用 | [^3][^4] #### 四、进阶技巧 1. **多条件查询**: 使用辅助列合并多个条件字段 ```excel =VLOOKUP(A2&B2, $D$2:$F$100, 3, 0) ``` 2. **通配符匹配**: `"*"`匹配任意字符,`"?"`匹配单个字符 ```excel =VLOOKUP("张*", $A$2:$C$100, 3, 0) ``` 3. **跨表查询**: 引用其他工作表数据 ```excel =VLOOKUP(A2, Sheet2!$A$2:$D$100, 4, 0) ``` [^1][^4]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值