注意力机制(Attention Mechanism)和Transformer模型的区别与联系

注意力机制(Attention Mechanism)Transformer 模型 是深度学习领域中的两个重要概念,虽然它们紧密相关,但有着明显的区别。下面我们将从 定义作用结构应用 等多个维度来分析这两者的区别与联系。

1. 定义

  • 注意力机制(Attention Mechanism)

    • 注意力机制是一种 计算方法,用来让模型 动态地聚焦于输入数据中的关键信息,从而根据输入的不同部分赋予不同的重要性。
    • 它的核心思想是基于 查询(Query) 来计算与 键(Key) 之间的相关性,并根据相关性对 值(Value) 进行加权求和。
    • 这种机制广泛应用于各种任务,特别是序列到序列(Seq2Seq)任务中,例如机器翻译、文本生成、图像描述等。
  • Tr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值