Python数据可视化:自然语言处理算法—网购商品评论情感判定(实战篇—2)

本文通过Python进行自然语言处理,探讨了网购商品评论的情感判定,包括数据集介绍、数据预处理、基于SVM的情感分类模型和word2vec的doc2vec无监督分类模型的应用,展示了NLP在情感分析中的实际操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、项目背景

2、数据集

3、数据预处理

4、基于SVM的情感分类模型

5、基于word2vec中doc2vec的无监督分类模型


自然语言处理(Natural Language Processing,简称NLP),是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,旨在帮助用户高效的处理文本,已经广泛应用在电商、文娱、司法、公安、金融、医疗、电力等行业客户的多项业务中,取得了良好的效果。

1、项目背景

任何行业领域,用户对产品的评价都显得尤为重要。通过用户评论,可以对用户情感倾向进行判定。

例如,目前最为普遍的网购行为:对于用户来说,参考评论可以做出更优的购买决策;对于商家来说,对商品评论按照情感倾向进行分类,并通过文本聚类得到普遍提及的商品优缺点,可以进一步改良产品。

本案例主要讨论如何对商品评论进行情感倾向判定。下图为某电商平台上针对某款手机的部分评论:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不脱发的程序猿

亲,赏包辣条吧~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值