FineBI6.x进阶篇-交互与美化专题

参考

点击查看功能详细介绍: https://help.fanruan.com/finebi6.0/doc-view-150.html

交互操作演示

如何清除联动效果

地图钻取

组件跳转简介
过滤组件概述

交互与美化专题

联动

联动设置分为默认联动和手动联动。
在这里插入图片描述
清除联动:清除所有联动和单个组件清除联动
在这里插入图片描述

数据编辑到仪表盘
数据编辑
  1. 上传交互美化-集团销售分析.xlsx数据到到FineBI的公共数据中在这里插入图片描述
  1. 左右合并
    合并后的数据
    在这里插入图片描述
  2. 新增公式列
    毛利额=销售额-成本额
    在这里插入图片描述
    保存并更新
组件1-销售top10 分组表

数据选合并后的明细表
图表为分组表
维度为商品名称
指标为销售额
根据维度过滤前top10,根据维度排序(按销售额降序)
在这里插入图片描述

组件2-不同商品类别销售额占比饼图

数据选合并后的明细表
图表为饼图
角度为商品类别
颜色为销售额
标签为商品类别和销售额 销售额快速计算选择为占比

在这里插入图片描述

组件3-毛利率分析 分组表

数据选合并后的明细表
创建毛利率字段
SUM_AGG({商品销售明细表_毛利额}) / SUM_AGG({商品销售明细表_销售额})
图表为分组表
维度为省份
指标为毛利率,销售额,毛利额,成本额
排序 按照毛利率升序排序
在这里插入图片描述

在省份处创建钻取目录
在这里插入图片描述
命名为省份城市
然后把城市 门店名称 商品名称拖到钻取目录下
在这里插入图片描述

这时在分组表中查看到湖南省的毛利率低,就可以点击钻取
在这里插入图片描述
钻取后,在上方有取消钻取的操作
在这里插入图片描述
经过层层钻取后,最后确定是德芙巧克力的问题
在这里插入图片描述

数据编辑-添加AK大客户信息表

数据-添加-选择KA客户信息详细表
在这里插入图片描述

组件4-城市KA大客户数记录表

数据为交互美化-KA客户信息详细表
图表为分组表
维度为 城市 和 客户名称
指标为记录数
在这里插入图片描述

仪表盘-

新建仪表盘
在这里插入图片描述

联动操作

在这里插入图片描述

不同商品类别销售额占比到销售top10和毛利率分析的单向联动

首先取消默认联动
在这里插入图片描述
点击不同商品类别销售额占比,选择联动设置
在这里插入图片描述
然后勾选 销售top10和毛利率分析 的联动设置
在这里插入图片描述
目前实现了不同商品类别销售额占比到销售top10和毛利率分析的单向联动

不同商品类别销售额占比和销售top10双向联动

销售top10的联动设置
勾选 不同商品类别销售额占比
在这里插入图片描述
实现双向联动

毛利率分析组件到城市KA大客户数记录表的单向联动

毛利率分析的联动设置
设置城市KA大客户数记录表的联动 自定义联动字段
在这里插入图片描述

操作步骤

  1. 添加组件,使用客户维度表新建城市KA大客户数记录表,将城市字段拖入维度窗格后,将记录数拖入指标栏后;
  2. 选中销售额top10组件,展开下拉,选择联动设置,选中不同商品类型销售额占比组件进行联动;
  3. 选中不同商品类型销售额占比组件,勾选销售额top10组件和毛利率分析组件进行联动;
  4. 选中毛利率分析组件,取消其对不同商品类型销售额占比组件的联动,即实现二者的单向联动,再选中毛利率分析组件,设置其与城市KA大客户数记录表组件进行联动。

钻取

钻取简介

钻取可以让用户在查看仪表板时动态改变维度的层次,它包括向上钻取和向下钻取。
比如可实现:查看省份数据时,可下钻查看到下方具体城市的数据。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

课堂练习

毛利率分析,实现地图钻取的功能,可以由省份钻取到市区,展示各个省份和城市的毛利率情况。
设置区域渐变,按照毛利率越高颜色越深的关系渐变,由此找到毛利率最低的城市进行分析。

新建组件5-地图钻取毛利率分析组件

数据选择为商品销售明细表
复制省份和城市字段为省份1和城市1
把省份1和城市1添加为地理角色
在这里插入图片描述
把城市1拖到省份1下,生成钻取
在这里插入图片描述
选择地图,把经纬度拖过去
在这里插入图片描述把省份拖到细粒度 把销售额拖到颜色
在这里插入图片描述
也可以把颜色换一个明显的颜色
单击黑龙江,即可显示黑龙江的钻取结果
在这里插入图片描述

跳转

跳转简介

当用户需要从当前仪表板跳转到别的页面时(可以跳转到普通网页、其他仪表板、FineReport模板等),可以使用跳转功能。
在这里插入图片描述

环境准备

把仪表盘命名为 集团销售分析
复制集团销售分析 到 门店销售分析
在这里插入图片描述
删除门店销售分析中的毛利率分析和城市KA大客户记录表
在这里插入图片描述

跳转到仪表盘

进入集团销售分析 仪表盘
在这里插入图片描述
在跳转设置进行设置
在这里插入图片描述
设置完成后,选择图表,在弹出来的跳转到分析模板,即可跳转到门店销售分析仪表盘
在这里插入图片描述

跳转到网页

过程差不多
设置网址为 https://www.baidu.com/s?wd=
在这里插入图片描述

过滤组件

过滤组件概述

过滤组件介绍

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

过滤组件

在这里插入图片描述

过滤组件操作

操作步骤

  1. 添加过滤组件,选择年月时间过滤组件,将日期拖入字段中,命名为“年月”
  2. 添加过滤组件,选择文本下拉过滤组件,将商品类别拖入字段,命名为“商品类别”;
  3. 添加过滤组件,选择下拉树过滤组件,将省份、城市、门店拖入字段,命名为“省份城市门店”;
  4. 选中省份城市下拉树组件,展开该过滤组件,自定义控制范围,选择只对“销售额top10”和“不同商品类别销售额占比”两个组件起过滤作用;
内容概要:本文档详细介绍了如何使用MATLAB实现粒子群优化算法(PSO)优化极限学习机(ELM)进行时间序列预测的项目实例。项目背景指出,PSO通过模拟鸟群觅食行为进行全局优化,ELM则以其快速训练和强泛化能力著称,但对初始参数敏感。结合两者,PSO-ELM模型能显著提升时间序列预测的准确性。项目目标包括提高预测精度、降低训练时间、处理复杂非线性问题、增强模型稳定性和鲁棒性,并推动智能化预测技术的发展。面对数据质量问题、参数优化困难、计算资源消耗、模型过拟合及非线性特征等挑战,项目采取了数据预处理、PSO优化、并行计算、交叉验证等解决方案。项目特点在于高效的优化策略、快速的训练过程、强大的非线性拟合能力和广泛的适用性。; 适合人群:对时间序列预测感兴趣的研究人员、数据科学家以及有一定编程基础并希望深入了解机器学习优化算法的工程师。; 使用场景及目标:①金融市场预测,如股票走势预测;②气象预报,提高天气预测的准确性;③交通流量预测,优化交通管理;④能源需求预测,确保能源供应稳定;⑤医疗健康预测,辅助公共卫生决策。; 其他说明:文档提供了详细的模型架构描述和MATLAB代码示例,涵盖数据预处理、PSO优化、ELM训练及模型评估等关键步骤,帮助读者全面理解和实践PSO-ELM模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

IT从业者张某某

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值